Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Ching HC, Naidu R, Seong MK, Har YC, Taib NA
    Int J Oncol, 2011 Sep;39(3):621-33.
    PMID: 21687935 DOI: 10.3892/ijo.2011.1081
    Breast cancer is a heterogeneous disease, marked by extensive chromosomal aberrations. In this study, we aimed to explicate the underlying chromosomal copy number (CN) alterations and loss of heterozygosity (LOH) implicated in a cohort of Malaysian hospital-based primary breast carcinoma samples using a single nucleotide polymorphism (SNP) array platform. The analysis was conducted by hybridizing the extracted DNA of 70 primary breast carcinomas and 37 normal peripheral blood samples to the Affymetrix 250K Sty SNP arrays. Locus-specific CN aberrations and LOH were statistically summarized using the binary segmentation algorithm and hidden Markov model. Selected genes from the SNP array analysis were also validated using quantitative real-time PCR. The merging of CN and LOH data fabricated distinctive integrated alteration profiles, which were comprised of finely demarcated minimal sites of aberrations. The most prevalent gains (≥ 30%) were detected at the 8q arm: 8q23.1, 8q23.3, 8q24.11, 8q24.13, 8q24.21, 8q24.22, 8q24.23 and 8q24.3, whilst the most ubiquitous losses (≥ 20%) were noted at the 8p12, 8p21.1, 8p21.2, 8p21.1-p21.2, 8p21.3, 8p22, 8p23.1, 8p23.1‑p23.2, 8p23.3, 17p11.2, 17p12, 17p11.2-p12, 17p13.1 and 17p13.2 regions. Copy-neutral LOH was characterized as the most prevailing LOH event, in which the most frequent distributions (≥ 30%) were revealed at 3p21.31, 5q33.2, 12q24.12, 12q24.12‑q24.13 and 14q23.1. These findings offer compre-hensive genome-wide views on breast cancer genomic changes, where the most recurrent gain, loss and copy-neutral LOH events were harboured within the 8q24.21, 8p21.1 and 14q23.1 loci, respectively. This will facilitate the uncovering of true driver genes pertinent to breast cancer biology and the develop-ment of prospective therapeutics.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  2. Norrakiah, A.S., Shahrul Azim, M. G., Sahilah, A.M., Abdul Salam, B.
    MyJurnal
    This study was conducted to investigate the sensitivity and detection of porcine DNA in raw materials, ingredients and finished bakery products by polymerase chain reaction (PCR) - southern hybridization on chip analysis. A total of 20 samples (n=20* 3) with three replicates for each samples were obtained from a bakery factory located in Bangi, Selangor from January to December 2012. The sensitivity level of PCR-southern hybridization on chip was 0.001 ng. The species-specific oligonucleotide primers used in PCR-southern hybridization were targeted on the mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence, namely cty b biotin-labeled oligonucleotide primers. The amplicon from PCR amplification was 276 bp in size. None of the raw materials, ingredients and finished bakery product samples was positive towards porcine DNA, except for the positive control. The results in the present study demonstrated that the PCR- southern-hybridization technique on the gene chip (OliproTM Porcine gene chip) is a sensitive tool for monitoring the porcine component in highly processed ingredients and finished bakery products.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  3. Nik Norliza Nik Hassan, Rozita Rosli, Abdul Munir Abdul Murad, Nor Kaslina Kornain, Sabariah, A.R., Rohan Malek Johan, et al.
    MyJurnal
    DNA microarray technology has permitted large scale parallel analysis of gene expression of several diseases, including cancers. Real-time PCR has become a well-established procedure for
    quantifying levels of gene expression. We evaluated Real-Time PCR to validate differentially expressed genes identified by DNA arrays. Gene expression of three different grade of transitional cell carcinoma (TCC) of human bladder cancer was determined using microarray slide containing cancer-related genes. Data obtained were sorted according based on the ratios between Cy3 and Cy5 dyes used and revealed 119, 235 and 183 differentially expressed genes in TCC WHO Grades I, II and III, respectively. Real-time PCR used SYBR Green-1 dye detection to validate relative change in gene expression. Real- Time PCR confirmed the change in gene expression of 17 of 28 (75%) genes identified by microarray. Real-Time PCR also suggest that genes identified by microarray with two or higher fold change cannot be eliminated as false nor be accepted as true without validation. Real-Time PCR based on SYBR Green- 1 is well-suited to validate DNA array results because it is quantitative, rapid and requires less RNA compared to the conventional assays.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  4. Sulong S
    Malays J Med Sci, 2010 Jul;17(3):5-12.
    PMID: 22135543
    Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single platform for the quantification of chromosomal amplifications, deletions, and loss of heterozygosity or for allelic imbalance studies. Importantly, this array analysis has the potential to reveal novel genetic findings involved in the multistep development of cancer. Given the importance of genetic factors in leukaemogenesis and the usefulness of screening the whole genome, SNPA analysis has been utilised in many studies to characterise genetic aberrations in childhood acute lymphoblastic leukaemia.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  5. Mokhtar NM, Ramzi NH, Yin-Ling W, Rose IM, Hatta Mohd Dali AZ, Jamal R
    Cancer Invest, 2012 Feb;30(2):156-64.
    PMID: 22122087 DOI: 10.3109/07357907.2011.633290
    This research determined genes contributing to the pathogenesis of endometrioid endometrial cancer (EEC). Eight pairs of microdissected EEC samples matched with normal glandular epithelium were analyzed using microarray. Unsupervised analysis identified 162 transcripts (58 up- and 104 down-regulated) that were differentially expressed (p < .01, fold change ≥ 1.5) between both groups. Quantitative real-time polymerase chain reaction (qPCR) validated the genes of interest: SLC7A5, SATB1, H19, and ZAK (p < .05). Pathway analysis revealed genes involved in acid amino transport, translation, and chromatin remodeling (p < .05). Laser capture microdissection (LCM) followed by microarray enabled precise assessment of homogeneous cell population and identified putative genes for endometrial carcinogenesis.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods
  6. Lim CS, Rosli R, Seow HF, Chong PP
    Int J Med Microbiol, 2011 Aug;301(6):536-46.
    PMID: 21371935 DOI: 10.1016/j.ijmm.2010.12.002
    Systemic infections of Candida albicans, the most prevalent fungal pathogen in humans, are on the rise in recent years. However, the exact mode of pathogenesis of this fungus is still not well elucidated. Previous studies using C. albicans mutants locked into the yeast form via gene deletion found that this form was avirulent and did not induce significant differential expression of host genes in vitro. In this study, a high density of C. albicans was used to infect human umbilical vein endothelial cells (HUVEC), resulting in yeast-form infections, whilst a low density of C. albicans resulted in hyphae infections. Transcriptional profiling of HUVEC response to these infections showed that high densities of C. albicans induced a stronger, broader transcriptional response from HUVEC than low densities of C. albicans infection. Many of the genes that were significantly differentially expressed were involved in apoptosis and cell death. In addition, conditioned media from the high-density infections caused a significant reduction in HUVEC viability, suggesting that certain molecules released during C. albicans and HUVEC interactions were capable of causing cell death. This study has shown that C. albicans yeast-forms, at high densities, cannot be dismissed as avirulent, but instead could possibly contribute to C. albicans pathogenesis.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods
  7. Momynaliev K, Klubin A, Chelysheva V, Selezneva O, Akopian T, Govorun V
    Res. Microbiol., 2007 May;158(4):371-8.
    PMID: 17363224
    Ureaplasma parvum colonizes human mucosal surfaces, primarily in the respiratory and urogenital tracts, causing a wide spectrum of diseases, from non-gonococcal urethritis to pneumonitis in immunocompromised hosts. Although the basis for these diverse clinical outcomes is not yet understood, more severe disease may be associated with strains harboring a certain set of strain-specific genes. To investigate this, whole genome DNA macroarrays were constructed and used to assess genomic diversity in 10 U. parvum clinical strains. We found that 7.6% of U. parvum genes were dispersed into one or more strains, thus defining a minimal functional core of 538 U. parvum genes. Most of the strain-specific genes (79%) were of unknown function and were unique to U. parvum. Four hypervariable plasticity regions were identified in the genome containing 93% of the variability in the gene pool (UU32-UU33, UU145-UU170, UU440-UU447 and UU527-UU529). We hypothesized that one of them (UU145-UU170) was a pathogenicity island in U. parvum and we characterized it. Thus, we propose that the clinical outcome of U. parvum infection is probably associated with this newly identified pathogenicity island.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods*
  8. Khoo CK, Abdul-Murad AM, Kua BC, Mohd-Adnan A
    Fish Shellfish Immunol, 2012 Oct;33(4):788-94.
    PMID: 22842150 DOI: 10.1016/j.fsi.2012.07.005
    Cryptocaryoniasis (also known as marine white spot disease) is mediated by Cryptocaryon irritans. This obligate ectoparasitic protozoan infects virtually all marine teleosts, which includes Lates calcarifer, a highly valuable aquaculture species. Little is known about L. calcarifer-C. irritans interactions. This study was undertaken to gain an informative snapshot of the L. calcarifer transcriptomic response over the course of C. irritans infection. An in-house fabricated cDNA microarray slides containing 3872 probes from L. calcarifer liver and spleen cDNA libraries were used as a tool to investigate the response of L. calcarifer to C. irritans infection. Juvenile fish were infected with parasites for four days, and total RNA was extracted from liver tissue, which was harvested daily. We compared the transcriptomes of C. irritans-infected liver to uninfected liver over an infection period of four days; the comparison was used to identify the genes with altered expression levels in response to C. irritans infection. The greatest number of infection-modulated genes was recorded at 2 and 3 days post-infection. These genes were mainly associated with the immune response and were associated in particular with the acute phase response. Acute phase proteins such as hepcidin, C-type lectin and serum amyloid A are among the highly modulated genes. Our results indicate that an induced acute phase response in L. calcarifer toward C. irritans infection is similar to the responses observed in bacterial infections of teleosts. This response demonstrates the importance of first line defenses in teleost innate immune responses against ectoparasite infection.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/veterinary
  9. Ponnampalam SN, Kamaluddin NR, Zakaria Z, Matheneswaran V, Ganesan D, Haspani MS, et al.
    Oncol Rep, 2017 Jan;37(1):10-22.
    PMID: 28004117 DOI: 10.3892/or.2016.5285
    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a p<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (p<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods
  10. Dutse SW, Yusof NA
    Sensors (Basel), 2011;11(6):5754-68.
    PMID: 22163925 DOI: 10.3390/s110605754
    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis/methods*
  11. Abdul Rahman A, Abdul Karim N, Abdul Hamid NA, Harun R, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:189129.
    PMID: 24381713 DOI: 10.1155/2013/189129
    Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  12. Gan CS, Wang CW, Tan KS
    Genet. Mol. Res., 2012;11(1):147-52.
    PMID: 22370881 DOI: 10.4238/2012.January.27.1
    Cerebral ischemia or ischemic stroke is mainly attributed to vascular and circulation disorders. Among protein biomarkers, RNA profiles have also been identified as markers of ischemic stroke. MicroRNA-145 expression is ostensibly recognized as marker and modulator of vascular smooth muscle cell phenotype; however, expression levels in ischemic stroke had not been investigated. Employing real-time quantitative PCR, we examined the expression profile of circulatory microRNA-145 in healthy control subjects (N = 14) and ischemic stroke patients (N = 32). Circulatory microRNA-145 expression was significantly higher in ischemic stroke patients than in control subjects. This demonstrates that hemostatic mechanisms are affected by ischemic stroke. We conclude that circulating microRNA-145 has potential as a biomarker for ischemic stroke.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  13. Ong SY, Ng FL, Badai SS, Yuryev A, Alam M
    J Integr Bioinform, 2010;7(1).
    PMID: 20861532 DOI: 10.2390/biecoll-jib-2010-145
    Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  14. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  15. Norhazlin J, Nor-Ashikin MN, Hoh BP, Sheikh Abdul Kadir SH, Norita S, Mohd-Fazirul M, et al.
    Genet. Mol. Res., 2015;14(3):10172-84.
    PMID: 26345954 DOI: 10.4238/2015.August.28.1
    The quality of RNA is crucial when performing microarray experiments. This is particularly important when dealing with preimplantation embryos, from which a minimum yield of RNA of good quality can be produced. We report the optimization of several RNA extraction methods applied to preimplantation embryos at different stages of development. The quality of the samples was confirmed using a microarray and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis. A total of 30 cultured two-cell stage embryos of ICR mice were pooled at the 8-cell, morula, and blastocyst stages. The embryos were divided into two groups comprising DNase-treated and non-DNase-treated RNA samples. Total RNA was extracted using a Pico Pure RNA Isolation Kit following the manufacturer protocol, with some modifications. Lysed samples were bound to a silica-based filter, treated with deoxyribonuclease I (DNase I), and washed several times before elution. RNA concentration and integrity were evaluated using an Agilent 2100 Bioanalyzer and an RNA 6000 Pico Assay kit. Although concentrations of non-DNase-treated RNAs were higher than DNase-treated RNA, DNase-treated RNA gave a higher RNA integrity number compared with non-DNase-treated RNA. Inclusion of DNase treatment in the RNA extraction procedure gave the best quality RNA samples from preimplantation embryos, as validated by microarray and RT-qPCR quality control.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  16. Abu N, Yeap SK, Pauzi AZ, Akhtar MN, Zamberi NR, Ismail J, et al.
    Front Pharmacol, 2016;7:89.
    PMID: 27065873 DOI: 10.3389/fphar.2016.00089
    The Fritillaria imperialis is an ornamental flower that can be found in various parts of the world including Iraq, Afghanistan, Pakistan, and the Himalayas. The use of this plant as traditional remedy is widely known. This study aims to unveil the anti-cancer potentials of Isopimara-7,15-Dien-19-Oic Acid, extracted from the bulbs of F. imperialis in cervical cancer cell line, HeLa cells. Flow cytometry analysis of cell death, gene expression analysis via cDNA microarray and protein array were performed. Based on the results, Isopimara-7,15-Dien-19-Oic acid simultaneously induced cell death and promoted cell survival. The execution of apoptosis was apparent based on the flow cytometry results and regulation of both pro and anti-apoptotic genes. Additionally, the regulation of anti-oxidant genes were up-regulated especially thioredoxin, glutathione and superoxide dismutase- related genes. Moreover, the treatment also induced the activation of pro-survival heat shock proteins. Collectively, Isopimara-7,15-Dien-19-Oic Acid managed to induce cellular stress in HeLa cells and activate several anti- and pro survival pathways.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  17. Johnson KR, Hindmarch CC, Salinas YD, Shi Y, Greenwood M, Hoe SZ, et al.
    PLoS One, 2015;10(4):e0124523.
    PMID: 25897513 DOI: 10.1371/journal.pone.0124523
    Magnocellular neurons (MCNs) in the hypothalamo-neurohypophysial system (HNS) are highly specialized to release large amounts of arginine vasopressin (Avp) or oxytocin (Oxt) into the blood stream and play critical roles in the regulation of body fluid homeostasis. The MCNs are osmosensory neurons and are excited by exposure to hypertonic solutions and inhibited by hypotonic solutions. The MCNs respond to systemic hypertonic and hypotonic stimulation with large changes in the expression of their Avp and Oxt genes, and microarray studies have shown that these osmotic perturbations also cause large changes in global gene expression in the HNS. In this paper, we examine gene expression in the rat supraoptic nucleus (SON) under normosmotic and chronic salt-loading SL) conditions by the first time using "new-generation", RNA sequencing (RNA-Seq) methods. We reliably detect 9,709 genes as present in the SON by RNA-Seq, and 552 of these genes were changed in expression as a result of chronic SL. These genes reflect diverse functions, and 42 of these are involved in either transcriptional or translational processes. In addition, we compare the SON transcriptomes resolved by RNA-Seq methods with the SON transcriptomes determined by Affymetrix microarray methods in rats under the same osmotic conditions, and find that there are 6,466 genes present in the SON that are represented in both data sets, although 1,040 of the expressed genes were found only in the microarray data, and 2,762 of the expressed genes are selectively found in the RNA-Seq data and not the microarray data. These data provide the research community a comprehensive view of the transcriptome in the SON under normosmotic conditions and the changes in specific gene expression evoked by salt loading.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  18. Lim CH, Zainal NZ, Kanagasundram S, Zain SM, Mohamed Z
    PMID: 27177356 DOI: 10.1002/ajmg.b.32457
    Although major progress has been achieved in research and development of antipsychotic medications for bipolar disorder (BPD), knowledge of the molecular mechanisms underlying this disorder and the action of atypical antipsychotics remains incomplete. The levels of microRNAs (miRNAs)-small non-coding RNA molecules that regulate gene expression, including genes involved in neuronal function and plasticity-are frequently altered in psychiatric disorders. This study aimed to examine changes in miRNA expression in bipolar mania patients after treatment with asenapine and risperidone. Using a miRNA microarray, we analyzed miRNA expression in the blood of 10 bipolar mania patients following 12 weeks of treatment with asenapine or risperidone. Selected miRNAs were validated by using real-time PCR. A total of 16 miRNAs were differentially expressed after treatment in the asenapine group, 14 of which were significantly upregulated and the other two significantly downregulated. However, all three differentially expressed miRNAs in the risperidone group were downregulated. MiRNA target gene prediction and gene ontology analysis revealed significant enrichment for pathways associated with immune system response and regulation of programmed cell death and transcription. Our results suggest that candidate miRNAs may be involved in the mechanism of action of both antipsychotics in bipolar mania. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  19. Nawaratna SS, Gobert GN, Willis C, Chuah C, McManus DP, Jones MK
    Mol Biochem Parasitol, 2014 Sep;196(2):82-9.
    PMID: 25149559 DOI: 10.1016/j.molbiopara.2014.08.002
    The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
  20. Ambayya, Angeli, Sasmita, Andrew Octavian, Zainina Seman, Chang, Kian Meng, Sathar, Jameela, Yegappan, Subramanian, et al.
    MyJurnal
    Insights into molecular karyotyping using comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays enable the identification of copy number variations (CNVs) at a higher resolution and facilitate the detection of copy neutral loss of heterozygosity (CN-LOH) otherwise undetectable by conventional cytogenetics. The applicability of a customised CGH+SNP 180K DNA microarray in the diagnostic evaluation of Acute Myeloid Leukaemia (AML) in comparison with conventional karyotyping was assessed in this study. Methods: Paired tumour and germline post induction (remission sample obtained from the same patient after induction) DNA were used to delineate germline variants in 41 AML samples and compared with the karyotype findings. Results: After comparing the tumour versus germline DNA, a total of 55 imbalances (n 5-10 MB = 21, n 10-20 MB = 8 and n >20 MB = 26) were identified. Gains were most common in chromosome 4 (26.7%) whereas losses were most frequent in chromosome 7 (28.6%) and X (25.0%). CN-LOH was mostly seen in chromosome 4 (75.0%). Comparison between array CGH+SNP and karyotyping revealed 20 cases were in excellent agreement and 13 cases did not concord whereas in 15 cases finding could not be confirmed as no karyotypes available. Conclusion: The use of a combined array CGH+SNP in this study enabled the detection of somatic and germline CNVs and CN-LOHs in AML. Array CGH+SNP accurately determined chromosomal breakpoints compared to conventional cytogenetics in relation to presence of CNVs and CN-LOHs.
    Matched MeSH terms: Oligonucleotide Array Sequence Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links