Displaying publications 21 - 40 of 490 in total

Abstract:
Sort:
  1. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
    Matched MeSH terms: Physical Phenomena
  2. Albani A, Ibrahim MZ, Yong KH
    Data Brief, 2019 Aug;25:104306.
    PMID: 31406911 DOI: 10.1016/j.dib.2019.104306
    The measurement of this data aims to evaluate the wind shear variability at three selected sites in Malaysia. The sites are Kudat in Sabah, Kijal in Terengganu and Langkawi in Kedah. Both sites in Kudat and Kijal is located in coastal areas with few buildings or trees, while the site in Langkawi is a coastal area with many buildings or trees. The variables were measured using the sensors that mounted on the wind mast with the maximum height from 55 m to 70 m from ground level. The variables measured were wind speed, wind direction, temperature, and pressure, while the wind shear data were directly generated using the power law equation. The averaged wind shear based on measured multiple height wind speed at selected sites is larger than the 1/7 law (0.143). Also, the value of wind shear was higher in order Langkawi > Kudat > Kijal. Ultimately, the wind shear data are essential and can be reused in the wind energy potential study, especially for data extrapolation to desired wind turbine hub height.
    Matched MeSH terms: Physical Phenomena
  3. Liansheng Tang, Haitao Sang, Liqun Jiang, Yinlei Sun
    Sains Malaysiana, 2016;45:141-156.
    The suction between soil particles is the basis and core problem in the study of unsaturated soil. However, is the suction between soil particles just the matrix suction (which has been widely used since the discipline of unsaturated soil mechanics was established). In fact, the concept of matrix suction is from soil science and reflects the water-absorbing capacity of the soil. Matrix suction characterizes the interaction between soil particles and pore water rather than the interactions between soil particles, which were not in conformity with the principle of effective stress of soils. The suction of unsaturated soil, in essence, is the intergranular suction composed of absorbed suction and structural suction. In this paper, first, the basic concepts of absorbed suction and structural suction were briefly introduced. Then, with soil mechanics, powder science, crystal chemistry, granular material mechanics and other related disciplines of knowledge for reference, the quantitative calculation formulas were theoretically deduced for the absorbed suction for equal-sized and unequal-sized unsaturated soil particles with arbitrary packing and the variable structural suction for equal-sized unsaturated soil particles with arbitrary packing and unequal-sized unsaturated soil particles with close tetrahedral packing. The factors that influence these equations were discussed. Then, the shear strength theory of unsaturated soil was established based on the theory of intergranular suction through the analysis of the effective stress principle of unsaturated soil. This study demonstrates that the shear strength of unsaturated soil consists of three parts: The effective cohesive force, the additional strength caused by external loads and the strength caused by intergranular suction. The contribution of the three parts to the shear strength of unsaturated soil depends on the following influence factors: Soil type, confining pressure, water content and density. Therefore, these factors must be comprehensively considered when determining the strength of an unsaturated soil.
    Matched MeSH terms: Physical Phenomena
  4. Ahmad H, Albaqawi HS, Yusoff N, Yi CW
    Sci Rep, 2020 Jun 17;10(1):9860.
    PMID: 32555280 DOI: 10.1038/s41598-020-66664-9
    A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.
    Matched MeSH terms: Physical Phenomena
  5. Nee CH, Yap SL, Tou TY, Chang HC, Yap SS
    Sci Rep, 2016 Sep 23;6:33966.
    PMID: 27659184 DOI: 10.1038/srep33966
    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.
    Matched MeSH terms: Physical Phenomena
  6. Khalid AM, Hossain MS, Ismail N, Khalil NA, Balakrishnan V, Zulkifli M, et al.
    Polymers (Basel), 2020 Dec 30;13(1).
    PMID: 33396583 DOI: 10.3390/polym13010112
    In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
    Matched MeSH terms: Physical Phenomena
  7. Mohamed SH, Hossain MS, Mohamad Kassim MH, Ahmad MI, Omar FM, Balakrishnan V, et al.
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669623 DOI: 10.3390/polym13040626
    There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10-30 and 2-6 nm, respectively, and an aspect ratio of 5-15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.
    Matched MeSH terms: Physical Phenomena
  8. Wang P, Yang J, Li X, Liu M, Zhang X, Sun D, et al.
    Sci Rep, 2017 07 26;7(1):6615.
    PMID: 28747656 DOI: 10.1038/s41598-017-06007-3
    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10-5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
    Matched MeSH terms: Physical Phenomena
  9. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014 09 26;74(9):3036.
    PMID: 25814912
    Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and [Formula: see text], [Formula: see text], and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy [Formula: see text] with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 [Formula: see text]. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 [Formula: see text], and sleptons up to 260 [Formula: see text], depending on the model details.
    Matched MeSH terms: Physical Phenomena
  10. Ragunathan T, Xu X, Shuhili JA, Wood CD
    ACS Omega, 2019 Oct 01;4(14):15789-15797.
    PMID: 31592451 DOI: 10.1021/acsomega.9b01232
    Hydrate formation is a common challenge in the oil and gas industry when natural gas is transported under cold conditions in the presence of water. Coatings are one of the solutions that have shown to be a promising approach to address this challenge. However, this strategy suffers from the intrinsic existence of a solid-liquid interface causing a high rate of hydrate nucleation and high hydrate adhesion strength. This proof-of-concept study highlights the performance of a magnetic slippery surface to prevent hydrate adhesion at atmospheric pressure using tetrahydrofuran hydrates. The coating consisted of a hydrocarbon-based magnetic fluid, which was applied to a metal surface to create an interface that lowered the hydrate adhesion strength on the surface. The performance of these new surfaces under static and dynamic (under fluid flow) conditions shows that the magnetic coating gel can be a potential inhibitor for hydrate adhesion as it reduced the torque value after the formation of hydrates.
    Matched MeSH terms: Physical Phenomena
  11. Lai C, Wong W
    A novel dual-pulse actuation voltage that reduces dielectric charging in micro-electromechanical system (MEMS) switch and thus leading to a longer switch lifetime, are shown to simultaneously mitigate MEMS switch contact bouncing. A simple mass-spring-damper mathematical model is used to simulate movement of the switch contact as the excitation voltage is applied. The model shows that the novel dual-pulse voltages damped the acceleration of the switch membrane as it approaches the contact point, eventually slowing it down and minimizes the impact force. This has the effect of minimizing the occurrence of contact bouncing. Practical experiment on the commercial TeraVicta TT712-68CSP MEMS switch corroborates that the novel excitation voltages reduced bouncing.
    Matched MeSH terms: Physical Phenomena
  12. Musa N, Wong TW
    Carbohydr Polym, 2020 Nov 01;247:116673.
    PMID: 32829801 DOI: 10.1016/j.carbpol.2020.116673
    Microencapsulation of polysaccharidic nanoparticles is met with nanoscale and biological performance changes. This study designs soft agglomerates as nanoparticle vehicle without nanoparticles undergoing physical processes that alter their geometry. The nanoparticles were made of high molecular weight chitosan/pectin with covalent 5-fluorouracil/folate. Nanoparticle aggregation vehicle was prepared from low molecular weight chitosan. The nanoparticles and aggregation vehicle were blended in specific weight ratios to produce soft agglomerates. Nanoparticles alone are unable to agglomerate. Adding aggregation vehicle (< 2 μm) promoted soft agglomeration with nanoparticles deposited onto its surfaces with minimal binary coalescence. The large and rough-surfaced aggregation vehicle promoted nanoparticles deposition and agglomeration. A rounder vehicle allowed assembly of nanoparticles-on-aggregation vehicle into agglomerates through interspersing smaller between larger populations. Soft agglomeration reduced early drug release, and was responsive to intracapsular sodium alginate coat to further sustain drug release. The soft agglomerates can serve as a primary oral colon-specific vehicle.
    Matched MeSH terms: Physical Phenomena
  13. Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF
    Nanomaterials (Basel), 2020 Dec 10;10(12).
    PMID: 33321788 DOI: 10.3390/nano10122475
    Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.
    Matched MeSH terms: Physical Phenomena
  14. Sim A, Chidan Kumar CS, Kwong HC, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):896-900.
    PMID: 28638654 DOI: 10.1107/S2056989017007460
    In the title compounds, (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(2-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (I), (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (II) and (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one], C28H26O6 (III), the asymmetric unit consists of a half-mol-ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol-ecules are linked by pairs of C-H⋯π inter-actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C-H⋯O hydrogen bonds, forming R2(2)(16) and R2(2)(14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.
    Matched MeSH terms: Physical Phenomena
  15. Li Y, Ren S, Yan B, Zainal Abidin IM, Wang Y
    Sensors (Basel), 2017 Jul 31;17(8).
    PMID: 28758985 DOI: 10.3390/s17081747
    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
    Matched MeSH terms: Physical Phenomena
  16. Chua SY, Guo N, Tan CS, Wang X
    Sensors (Basel), 2017 Sep 05;17(9).
    PMID: 28872589 DOI: 10.3390/s17092031
    Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works.
    Matched MeSH terms: Physical Phenomena
  17. Zhao X, Lim SK, Tan CS, Li B, Ling TC, Huang R, et al.
    Materials (Basel), 2015 Jan 30;8(2):462-473.
    PMID: 28787950 DOI: 10.3390/ma8020462
    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
    Matched MeSH terms: Physical Phenomena
  18. Raba’atun Adawiyah Shamsuddin, Wan Ramli Wan Daud, Kim BH, Jamaliah Md. Jahim, Mimi Hani Abu Bakar, Wan Syaidatul Aqma Wan Mohd Noor
    Sains Malaysiana, 2018;47:3043-3049.
    Microbial fuel cells (MFCs) have a high potential application for simultaneous wastewater treatment and electricity
    generation. However, the choice of the electrode material and its design is critical and directly affect their performance.
    As an electrode of MFCs, the anode material with surface modifications is an attractive strategy to improve the power
    output. In this study, stainless steel (SS) and carbon steel (CS) was chosen as a metal anode, while graphite felt (GF)
    was used as a common anode. Heat treatment was performed to convert SS, CS and GF into efficient anodes for MFCs.
    The maximum current density and power density of the MFC-SS were achieved up till 762.14 mA/m2
    and 827.25 mW/m2
    ,
    respectively, which were higher than MFC-CS (641.95 mA/m2
    and 260.14 mW/m2
    ) and MFC-GF (728.30 mA/m2
    and 307.89
    mW/m2
    ). Electrochemical impedance spectroscopy of MFC-SS showed better catalytic activity compared to MFC-CS and
    MFC-GF anode, also supported by cyclic voltammetry test.
    Matched MeSH terms: Physical Phenomena
  19. Toh W, Lai J, Wan Aizan W
    Sains Malaysiana, 2011;40:1179-1186.
    Several methods of incorporating sago pith waste (SPW) into poly(vinyl alcohol) (PVA) had been conducted: (i) dry blending (PVA/SPW/G), (ii) blending of SPW and pre-plasticized PVA (pPVA/SPW/G) and (iii) blending of pre-plasticized of both PVA and SPW (pPVA/pSPW). The effect of the compounding method on the mechanical and water absorption properties were investigated. The addition of SPW into PVA greatly reduced the tensile strength and elongation at break. The tensile strength and elongation at break of PVA/SPW composites with identical geometry during compounding stage (powder/powder and pellet/pellet), which were PVA/SPW/G and pPVA/pSPW yielded the highest value. The percentage of water absorbed by PVA/SPW/G (without pre-plasticization) was the highest, followed by pPVA/pSPW and pPVA/SPW/G.
    Matched MeSH terms: Physical Phenomena
  20. Rizal S, Setiawan I, Ilhamsyah Y, Musman M, Iskandar T, Wahid MA
    The Malacca Straits is located between Peninsula Malaysia and Sumatra Island. This investigation used equation of motion (Navier-Stokes equation) with the following driving forces: tides, wind of National Centers for Environmental Prediction (NCEP) for year of 2007, salinity and temperature. The equation of motion was solved by means of Hamburg Shelf Ocean Model (HAMSOM). The results for both southwest and northeast monsoon were explained and discussed. The simulation results both for February and August 2007 were relatively similar. Current surface simulation in the Malacca Straits agrees well with the current pattern of previous works. The magnitude of current was between 10-70 cm/s to the northwest. While at the layer 30-50 m in the Malacca Straits, the currents have the magnitude of 10-30 cm/s towards northwest. For the bottom current, the current speed was 0-20 cm/s towards northwest. For the surface and 30-50 m layer, generally the current magnitudes were greater in February compared to those in August. While for the bottom layer, the current magnitudes between February and August were relatively the same.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links