Displaying publications 21 - 40 of 122 in total

Abstract:
Sort:
  1. Song C, Xiong Y, Jin P, Sun Y, Zhang Q, Ma Z, et al.
    Sci Total Environ, 2023 Oct 15;895:164986.
    PMID: 37353016 DOI: 10.1016/j.scitotenv.2023.164986
    China is responsible for the biggest shellfish and macroalgae production in the world. In this study, comprehensive methods were used to assess the CO2 release and sequestration by maricultured shellfish and macroalgae in China. Through considering CaCO3 production and CO2 release coefficient (Φ, moles of CO2 released per mole of CaCO3 formed) in different waters, we find that cultured shellfish released 0.741 ± 0.008 Tg C yr-1 through calcification based on the data of 2016-2020. In addition to calcification, maricultured shellfish released 0.580 ± 0.004 Tg C yr-1 by respiration. Meanwhile, shellfish sequestered 0.145 ± 0.001 and 0.0387 ± 0.0004 Tg C yr-1 organic carbon in sediments and shells, respectively. Therefore, the net released CO2 by maricultured shellfish was 1.136 ± 0.011 Tg C yr-1, which is about four times higher than that maricultured macroalgae could sequester (0.280 ± 0.010 Tg C yr-1). To achieve carbon neutrality within the mariculture system, shellfish culture may need to be restricted and meanwhile the expansion of macroalgae cultivation should be carried out. The mean carbon sequestration rate of seven kinds of macroalgae was 174 ± 6 g m-2 yr-1 while some cultivated macroalgae had higher CO2 sequestration rates, e.g. 356 ± 24 g C m-2 yr-1 for Gracilariopsis lemaneiformis and 331 ± 17 g C m-2 yr-1 for Undaria pinnatifida. In scenario 0.5 (CCUS (Carbon Capture, Utilization and Storage) sequesters 0.5 Gt CO2 per year), using macroalgae culture cannot achieve China's carbon neutrality by 2060 but in scenarios 1.0 and 1.5 (CCUS sequesters 1.0 and 1.5 Gt CO2 per year, respectively) it is feasible to achieve carbon neutrality using some macroalgae species with high carbon sequestration rates. This study provides important insights into how to develop mariculture in the context of carbon-neutrality and climate change mitigation.
    Matched MeSH terms: Seaweed*
  2. Ravindiran G, Rajamanickam S, Ramalingam M, Hayder G, Sathaiah BK, Gaddam MKR, et al.
    Environ Res, 2024 Jan 15;241:117551.
    PMID: 37939801 DOI: 10.1016/j.envres.2023.117551
    The present study investigated the sustainable approach for wastewater treatment using waste algal blooms. The current study investigated the removal of toxic metals namely chromium (Cr), nickel (Ni), and zinc (Zn) from aqueous solutions in batch and column studies using biochar produced by the marine algae Ulva reticulata. SEM/EDX, FTIR, and XRD were used to examine the adsorbents' properties and stability. The removal efficiency of toxic metals in batch operations was investigated by varying the parameters, which included pH, biochar dose, initial metal ion concentration, and contact time. Similarly, in the column study, the removal efficiency of heavy metal ions was investigated by varying bed height, flow rate, and initial metal ion concentration. Response Surface Methodology (Central Composite Design (CCD)) was used to confirm the linearity between the observed and estimated values of the adsorption quantity. The packed bed column demonstrated successful removal rates of 90.38% for Cr, 91.23% for Ni, and 89.92% for Zn heavy metals from aqueous solutions, under a controlled environment. The breakthrough analysis also shows that the Thomas and Adams-Bohart models best fit the regression values, allowing prior breakthroughs in the packed bed column to be predicted. Desorption studies were conducted to understand sorption and elution during different regeneration cycles. Adding 0.3 N sulfuric acid over 40 min resulted in the highest desorption rate of the column and adsorbent used for all three metal ions.
    Matched MeSH terms: Seaweed*
  3. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
    Matched MeSH terms: Seaweed*
  4. Ariano A, Musco N, Severino L, De Maio A, Tramice A, Tommonaro G, et al.
    Biomolecules, 2021 May 29;11(6).
    PMID: 34072325 DOI: 10.3390/biom11060804
    The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant capacity of two tropical eucheumatoids, Kappaphycus alvarezii and Kappaphycus striatus, in Malaysian wild offshore waters. The chemical analysis was performed via inductively coupled plasma-optical emission spectroscopy for evaluating the concentration of toxic (Cd, Pb, Hg, As) and essential elements (Mn, Fe, Cu, Ni, Zn, Se); NMR spectroscopy was used for carrageenans investigation. Furthermore, the soluble and fat-soluble antioxidant capacities were determined by FRAP, DPPH and ABTS assays. The chemical analysis revealed a higher content of trace elements in K. alvarezii as compared to K. striatus, and both exhibited a high mineral content. No significant differences in metal concentrations were found between the two species. Both samples showed a mixture of prevailing κ- and t-carrageenans. Finally, the levels of soluble and fat-soluble antioxidants in K. alvarezii were significantly higher than in K. striatus. Our findings suggest that K. alvarezii could be used as a potential feed additive because of its favorable chemical and nutritional features.
    Matched MeSH terms: Seaweed/chemistry*
  5. Siah, W. M., Aminah, A., Ishak, A.
    MyJurnal
    The effects of soaking conditions on the quality characteristics of seaweed paste of Kappaphycus alverazii species were studied. Response Surface Methodology (RSM) with a 2-factor, 5-level central composite design (CCD) was conducted to determine the optimum soaking conditions. The interactive effect of dry seaweed: soaking water ratio (X1 = 1: 15-50) and soaking duration (X2 = 30-120 min) on the gel strength (g), whiteness, expansion (%), moisture content (%) and protein content (g/100 g) of the paste were determined. Results showed that the experimental data could be adequately fitted into a second-order polynomial model with multiple regression coefficients (R2) of 0.8141, 0.9245, 0.9118, 0.9113 and 0.9271 for the gel strength, whiteness, expansion, moisture content and protein content, respectively. The gel strength, whiteness, expansion, moisture content and protein content of seaweed paste were dependent on the ratio of dry seaweed to soaking water and also soaking duration. The proposed optimum soaking conditions for the production of seaweed paste is at a ratio of 1:15 (dry seaweed : soaking water) and soaking duration of 117.06 min. Based on the result obtained, the RSM demonstrated a suitable approach for the processing optimization of Kappaphycus alverazii paste.
    Matched MeSH terms: Seaweed
  6. Sitti Nurmiah, Syarief, R., Sukarno, Peranginangin, R., Nurtama, B., Jaswir, I.
    MyJurnal
    A refined carrageenan is a form of carrageenan, extracted from red algae and purified. Important factors affecting the commercial production of carrageenan after alkaline extraction are the ratio of seaweed to water, temperature, and extraction time. In this study, extraction of refined carrageenan from Kappaphycus alvarezii was conducted on pilot plan scale. Extraction conditions were varied, affecting the final characteristics of the carrageenan product. The optimum conditions investigated for the extraction process included the ratio of seaweed to water, temperature, and extraction time determined using Response Surface Methodology (RSM). Box-Behnken was used to investigate the interaction effects of three independent variables, namely seaweed to water ratio, extraction temperature and extraction time. The results showed that based on the RSM approach, ratio of seaweed to water, temperature and extraction time had a significant influence on the carrageenan. Optimum extraction conditions obtained were seaweed to water ratio of 1:25.22, extraction temperature of 85.80oC and extraction time of 4 h. Under these optimal conditions, the yield obtained was 31.74 % and gel strength was 1833.37 g.cm-2.
    Matched MeSH terms: Seaweed
  7. Lee JS, Lo YL, Chye FY
    This study was carried out to elucidate the effect of three types of cation (K+, Ca2+ and Na+) at various concentrations on the gelling properties of untreated Eucheuma cottoni, with the ultimate aim to explore the possibility of utilizing the seaweed in its natural form as gelling agent. Results obtained suggest that E. cottonii also exhibited the dramatic cation specificity of k-carrageenan, in which the dependence of gel strength follows the order: K+ > Ca2+ > Na+. As expected, cations addition exerts adverse effect on the syneresis, water holding capacity and freeze-thaw stability of the seaweed gel. Water holding capcity of the gel is however independent of the increased concentrations of K+(p>0.05). Storage duration and storage temperature significantly (p<0.05) affect the syneresis and water holding capacity of the gel. Among the cations, K+ appears to be better in improving the gel properties of the seaweed.
    Matched MeSH terms: Seaweed
  8. Harun R, Yip JW, Thiruvenkadam S, Ghani WA, Cherrington T, Danquah MK
    Biotechnol J, 2014 Jan;9(1):73-86.
    PMID: 24227697 DOI: 10.1002/biot.201200353
    The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to increased interest in alternative sources of energy production. Bioethanol, presently produced from energy crops, is one such promising alternative future energy source and much research is underway in optimizing its production. The economic and temporal constraints that crop feedstocks pose are the main downfalls in terms of the commercial viability of bioethanol production. As an alternative to crop feedstocks, significant research efforts have been put into utilizing algal biomass as a feedstock for bioethanol production. Whilst the overall process can vary, the conversion of biomass to bioethanol usually contains the following steps: (i) pretreatment of feedstock; (ii) hydrolysis; and (iii) fermentation of bioethanol. This paper reviews different technologies utilized in the pretreatment and fermentation steps, and critically assesses their applicability to bioethanol production from algal biomass. Two different established fermentation routes, single-stage fermentation and two-stage gasification/fermentation processes, are discussed. The viability of algal biomass as an alternative feedstock has been assessed adequately, and further research optimisation must be guided toward the development of cost-effective scalable methods to produce high bioethanol yield under optimum economy.
    Matched MeSH terms: Seaweed/chemistry*
  9. Namvar F, Tahir PM, Mohamad R, Mahdavi M, Abedi P, Najafi TF, et al.
    Nat Prod Commun, 2013 Dec;8(12):1811-20.
    PMID: 24555303
    This review article summarizes in vitro and in vivo experiments on seaweed anticancer activity and seaweed chemical components. Seaweed use in cancer therapy, chemopreventive randomized control trials (RCTs) and quasi-experiments are discussed. The literature reviewed in this article was obtained from various scientific sources and encompasses publications from 2000-2012. Seaweed therapeutic effects were deemed scientifically plausible and may be partially explained by the in vivo and in vitro pharmacological studies described. Although the mechanisms of action remain unclear, seaweed's anticancer properties may be attributable to its major biologically active metabolites. Much of the seaweed research outlined in this paper can serve as a foundation for explaining seaweed anticancer bioactivity. This review will open doors for developing strategies to treat malignancies using seaweed natural products.
    Matched MeSH terms: Seaweed*
  10. Sharifuddin Y, Chin YX, Lim PE, Phang SM
    Mar Drugs, 2015 Aug;13(8):5447-91.
    PMID: 26308010 DOI: 10.3390/md13085447
    Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.
    Matched MeSH terms: Seaweed/metabolism*
  11. Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS
    PMID: 30551682 DOI: 10.3390/ijerph15122851
    Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.
    Matched MeSH terms: Seaweed/metabolism*
  12. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Seaweed/metabolism
  13. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Jun;99:265-273.
    PMID: 28249765 DOI: 10.1016/j.ijbiomac.2017.02.092
    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.
    Matched MeSH terms: Seaweed/chemistry*
  14. Lim SY, Loo KW, Wong WL
    Probiotics Antimicrob Proteins, 2020 09;12(3):906-917.
    PMID: 31773414 DOI: 10.1007/s12602-019-09616-8
    The outbreak of acute hepatopancreatic necrosis disease (AHPND) has caused great economic losses to the shrimp culture sector. However, the use of antibiotics to fight this disease has resulted in negative impacts on human health and the environment. Thus, the use of natural alternatives to antibiotics may be a better solution. In this study, four Bacillus species obtained from the guts of shrimps (Fenneropenaeus penicillatus and Penaeus monodon) showed antimicrobial activity against the AHPND-causing Vibrio parahaemolyticus strain 3HP using the cross-streaking and agar spot methods. Two of the Bacillus isolates, B2 and BT, also showed good probiotic properties, exhibiting tolerance to bile, good adhesion to shrimp mucus, non-hemolytic, susceptibility to antibiotics and being safe towards hosts. Moreover, a seaweed-probiotic blend (a combination of Bacillus B2 and 20 mg/ml of the red seaweed Gracilaria sp.) exhibited synergistic in vitro inhibition against V. parahaemolyticus strain 3HP, with an observed inhibition zone of 5.0 mm. The broth co-culture experiment results further indicated that the seaweed-probiotic blend inhibited V. parahaemolyticus through competitive exclusion. The in vivo challenge trials also confirmed that this seaweed-probiotic blend significantly reduced the mortality of shrimps post-challenge with the AHPND-causing V. parahaemolyticus strain 3HP (p < 0.05) compared to the negative control (mortality rate = 13.88% vs 72.19%). Thus, this seaweed-probiotic blend may serve as an alternative to antibiotics in controlling the outbreak of AHPND.
    Matched MeSH terms: Seaweed/microbiology
  15. Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, et al.
    Basic Clin Pharmacol Toxicol, 2018 Jun;122(6):539-558.
    PMID: 29369521 DOI: 10.1111/bcpt.12972
    Several studies have reported that nature-derived antioxidants may prevent free radicals over-production and therefore control the onset and prevent the exacerbation of different kinds of diseases caused by oxidative stress and redox-derived stressors, including ageing, fundamentally by suppressing the oxidative by-products-mediated degradation. Naturally derived antioxidants exert their anti-ageing action via a panoply of signalling systems, many of which engaging reactive oxygen and nitrogen species scavenging, with the Nrf2/Keap1-ARE system and improving the many survival genes and functions (such as the pathway mTOR/Foxo/SIRT1) able to slow cellular senescence. Most of the research in this field has evaluated the regulative effects and even pathways of herbal extracts with antioxidant property in the ageing process, and various age-related disorders such as cardiovascular disease, ischaemia-reperfusion injury, coronary and myocardial circulatory perfusion, peripheral vascular resistance, and even neurodegenerative disorders are prevented plant phytochemicals often via their antioxidant potential. A much more complex ability to interact with survival functions makes these compounds successfully active in preventing ageing-related disorders. This report aimed to discuss in more detail some selected medicinal plants including Allium sativum, Aloe vera, Crataegus spp., Cynara scolymus, Eleutherococcus senticosus, Ginkgo biloba, Hippophae rhamnoides, Panax ginseng, Rosmarinus officinalis, Schizandra chinensis, Vitis vinifera and seaweeds in the prevention of ageing-related pathologies. A systematic overview of the relevant information in the antioxidant function of the many herbal products reviewed here for the control of the ageing process is proposed, to provide a new horizon on the design of anti-ageing herbal medicines.
    Matched MeSH terms: Seaweed/chemistry
  16. Arina N, Raynusha C, Hidayah N, Zainee NFA, Prathep A, Rozaimi M
    Mar Environ Res, 2020 Dec;162:105156.
    PMID: 33032080 DOI: 10.1016/j.marenvres.2020.105156
    Coralline macroalgae are globally distributed rhodopyhtes that remove carbon from their immediate environment and transform it into carbonate sediments through the senescence of their calcified tissues. In this study, the calcium carbonate (CaCO3) stocks in the tissue of Jania adhaerens and sediments in Tanjung Adang Shoal, Johor were quantified for a 13-month study period. The detailed maps of the geographical distribution based on the spatial and temporal variations of biomass and CaCO3 were also assessed. The highest amount of biomass, CaCO3 and organic carbon (OC) stocks in the tissues showed the highest in May 2018 and May 2019. The biomass values ranged from 65 to 143 g DW m-2, which contained 53-147 g CaCO3 m-2 and 3-11 g OC m-2. These findings provided insights into the biogeochemical cycling of these inputs, which can be used to estimate the overall carbon budget of the macrophyte meadow.
    Matched MeSH terms: Seaweed
  17. Nurul Najwa Zamimi, Noorhazayti Ab.Halim, Widya Lestari, Darnis, Deny Susanti, Wan Mohd Faizal Wan Ishak, Md Muziman Syah Md Mustafa
    MyJurnal
    Dental caries is the most common yet preventable disease. Study found that seaweed
    exhibits anti-cariogenic properties. However, little attention have been given to the study on anticariogenic properties of seaweed and the bioactive compound that responsible for the anticariogenic activities have not adequately investigated. This study was conducted to evaluate the
    best extraction methods for S. polycystum and to determine the fatty acid compounds of S.
    polycystum that have anti-cariogenic potential against oral cariogenic bacteria. (Copied from article).
    Matched MeSH terms: Seaweed
  18. Zhang X, Uchiyama Y, Nakayama A
    Mar Pollut Bull, 2019 Jul;144:265-274.
    PMID: 31179996 DOI: 10.1016/j.marpolbul.2019.04.050
    An Eulerian passive tracer model coupled with a quadruple-nested 3D circulation model was used to assess the coastal dispersal of treated wastewater effluent from a sewage treatment plant and the associated impacts on an adjacent seaweed farm using three different operational scenarios. When the discharged volume and source effluent fluxes were decreased by ~16.7%, the accumulated effluent in the farm was reduced by ~25.4%. A tracer flux budget analysis revealed the apparent predominance of the transient component that accounts for the nonlinear interactions primarily from tidal currents and eddies. The transient flux promoted the effluent influx to impede effluent accumulation in the farm, whereas the mean flux contributed to the outgoing flux. A source flux reduction caused a remarkable decrease in the transient flux and thus an even greater effluent accumulation reduction. In turn, a modified source density scenario without total effluent volume change did not work as expected.
    Matched MeSH terms: Seaweed
  19. Hammed, A. M., Jaswir, I., Simsek, S., Alam, Z., Amid, A.
    MyJurnal
    This study involves extraction of sulfated polysaccahride (SP) from brown seaweed (Turbinaria turbinata). Eight processing conditions affecting enzyme aided extraction (EAE) were screened using Plackett-Burman design. Three significant factors (hydrolysis time, enzyme concentration and extraction stage) were optimized using Faced Centred Central Composite Design in Random Surface Methods. Micrograph obtained using Field Emission Scanning Electron Microscopy revealed that cellulase degradation ruptured the seaweed cell matrix thus caused increase in the release of SP. The optimum conditions for extraction of SP from T. turbinata are: extraction stage of 2, hydrolysis time of 19.5 h and enzyme concentration of 1.5 μl/ml to produce 25.13% yield. The SP obtained from cellulase treated T. turbinata is a suitable anti-inflammatory agent for pharmaceutical applications.
    Matched MeSH terms: Seaweed
  20. Lim SJ, Wan Aida WM, Maskat MY, Latip J, Badri KH, Hassan O, et al.
    Food Chem, 2016 Oct 15;209:267-73.
    PMID: 27173562 DOI: 10.1016/j.foodchem.2016.04.058
    Fucoidan is a sulphated polysaccharide that consists mainly of fucose, normally found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterised. The chemical characteristics of Fsar were found to be different than those of commercial food grade fucoidan (Fysk) and those of previously studied fucoidans. NMR analysis proposed that the main structure of Fsar is →3)fuc-2-OSO3(-)(1→3)fuc(1→. The molecular weight (47.87kDa) and degree of sulphation (0.20) of Fsar were higher than those of Fysk, at 27.98kDa and 0.15, respectively. However, Fsar's polydispersity index (1.12) and fucose content (34.50%) were lower than those of Fysk, at 1.88 and 43.30%, respectively. Both Fsar and Fysk showed similar thermo-gravimetric properties with four mass losses, amorphous in nature and negative optical rotations. Results show that Fsar has fundamental characteristics of fucoidan with different structural conformation i.e. variation in glycosidic linkages and sulphate group orientation.
    Matched MeSH terms: Seaweed/growth & development; Seaweed/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links