Displaying publications 21 - 40 of 992 in total

Abstract:
Sort:
  1. Sivaranjani SK, Durairaj K, Jayalakshmi G, Sumathi J, Balasubramanian B, Chelliapan S, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116692.
    PMID: 37500033 DOI: 10.1016/j.envres.2023.116692
    Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  2. Mohamad NA, Nasef MM, Abdullah TAT, Ahmad A, Ting TM
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116906-116920.
    PMID: 37121947 DOI: 10.1007/s11356-023-26913-6
    A series of fibrous aminated adsorbents for CO2 adsorption were prepared by covalent incorporation of poly (glycidyl methacrylate) (PGMA) by graft copolymerization of GMA onto electron beam (EB) irradiated polyethylenepolypropylene (PE/PP) fibrous sheets and subsequent amination with ethylenediamine (EDA), diethylenetriamine (DETA), or tetraethylenepentamine (TEPA). The physico-chemical properties of the adsorbents were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. All the adsorbents displayed typic primary and secondary amine features combined with a decrease in both of crystallinity and surface area of PE/PP, and such a decrease was higher in adsorbents with longer aliphatic chain of the amine. Of all adsorbents, TEPA-containing fibres showed the highest CO2 adsorption capacity and thus was further investigated for CO2 capture from CO2/CH4 mixtures of different gas ratios under various pressures and temperatures. The selectivity of CO2 over CH4 and equilibrium isotherms, kinetics, and thermodynamics of the adsorption on the fibrous aminated adsorbent were all investigated. The Sips model was found to best fit the isotherm of CO2 adsorption suggesting the presence of a combination of monolayer and multilayer adsorptions. The adsorption kinetic data was found to best fit Elovich model reflecting chemisorption. The ΔG°, ΔS°, and ΔH° showed positive values suggesting that the adsorption of CO2 on the present fibrous adsorbent was non-spontaneous with an increase in randomness implying that the process was endothermic. Overall, it can be suggested that PE/PP-g-PGMA/TEPA adsorbent has a strong potential for separation of CO2 from NG.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  3. Irshad MA, Sattar S, Al-Huqail AA, Alghanem SMS, Nawaz R, Ain NU, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(52):112575-112590.
    PMID: 37833594 DOI: 10.1007/s11356-023-30141-3
    Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  4. Ishak S, Rosly NZ, Abdullah AH, Alang Ahmad SA
    Environ Monit Assess, 2023 Oct 12;195(11):1303.
    PMID: 37828347 DOI: 10.1007/s10661-023-11909-z
    Calix[4]arene/polyurethane (C4PU) has been synthesized and characterized as an alternative adsorbent for the adsorption of methylene blue (MB) and malachite green (MG) dyes from the aqueous solution. C4PU was synthesized by reacting p-tert-butyl calix[4]arene with hexamethylene diisocyanate (HMDI) as the cross-linking agent. Different polymer ratios were synthesized, and C4PU-4 shows better adsorption than other ratios. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and point of zero charges (pHPZC). The isotherms and kinetics of the adsorption of MB and MG were studied under a range of experimental conditions, including pH, adsorbent dosage, initial dye concentration, and contact time. The adsorption was determined by the adsorption percentage of MB and MG dyes from the solution. The Langmuir isotherm model best describes the adsorption process for both dyes, and it follows a pseudo-second-order kinetic model, with the maximum adsorption capacity (qmax) of MB and MG, respectively, was found to be 1.991 mg·g-1 and 2.240 mg·g-1.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  5. Tan YY, Wong LS, Nyam KL, Wittayanarakul K, Zawawi NA, Rajendran K, et al.
    Molecules, 2023 Sep 22;28(19).
    PMID: 37836592 DOI: 10.3390/molecules28196749
    Zinc oxide nanoparticles have high levels of biocompatibility, a low impact on environmental contamination, and suitable to be used as an ingredient for environmentally friendly skincare products. In this study, biogenically synthesized zinc oxide nanoparticles using Dendrobium anosum are used as a reducing and capping agent for topical anti-acne nanogels, and the antimicrobial effect of the nanogel is assessed on Cutibacterium acne and Staphylococcus aureus. Dendrobium anosmum leaf extract was examined for the presence of secondary metabolites and its total amount of phenolic and flavonoid content was determined. Both the biogenically and chemogenic-synthesized zinc oxide nanoparticles were compared using UV-Visible spectrophotometer, FE-SEM, XRD, and FTIR. To produce the topical nanogel, the biogenic and chemogenic zinc oxide nanoparticles were mixed with a carbomer and hydroxypropyl-methyl cellulose (HPMC) polymer. The mixtures were then tested for physical and chemical characteristics. To assess their anti-acne effectiveness, the mixtures were tested against C. acne and S. aureus. The biogenic zinc oxide nanoparticles have particle sizes of 20 nm and a high-phase purity. In comparison to chemogenic nanoparticles, the hydrogels with biogenically synthesized nanoparticles was more effective against Gram-positive bacteria. Through this study, the hybrid nanogels was proven to be effective against the microbes that cause acne and to be potentially used as a green product against skin infections.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  6. Aziz AA, Abdullah Sani MS, Zakaria Z, Abu Bakar NK
    Int J Cosmet Sci, 2023 Aug;45(4):444-457.
    PMID: 36987749 DOI: 10.1111/ics.12854
    BACKGROUND: The employment of Fourier transforms infrared (FT-IR) spectroscopy combined with chemometrics for determination and quantification of lard in a binary blend with palm oil in a cosmetic soap formulations.

    OBJECTIVE: To determine and quantify lard as an adulterant in a binary blend with palm oil in a cosmetic soap formulations by FT-IR and multivariate analysis.

    METHODS: Fatty acids in lard, palm oil and binary blends were extracted via liquid-liquid extraction and were subjected to FTIR spectrometry, combined with principal component analysis (PCA) and discriminant analysis (DA) for the classification of lard in cosmetic soap formulations via two DA models: Model A (percentage of lard in cosmetic soap) and Model B (porcine and non-porcine cosmetic soap). Linear regression (MLR), partial least square regression (PLS-R) and principal components regression (PCR) were used to assess the degree of adulteration of lard in the cosmetic soap.

    FINDINGS: The FTIR spectrum of palm oil slightly differed from that of lard at the wavenumber range of 1453 cm -1 and 1415 cm -1 in palm oil and lard, respectively, indicating the bending vibrations of CH2 and CH3 aliphatic groups and OH carboxyl group respectively. Both of the DA models could accurately classify 100% of cosmetic soap formulations. Nevertheless, less than 100% of verification value was obtained when it was further used to predict the unknown cosmetic soap sample suspected of containing lard or a different percentage of lard. The PCA for Model A and Model B explained a similar cumulative variability (CV) of 92.86% for the whole dataset. MLR and PCR showed the highest determination coefficient (R2) of 0.996, and the lowest relative standard error (RSE) and mean square error (MSE), indicating that both regression models were effective in quantifying the lard adulterant in cosmetic soap.

    CONCLUSION: FTIR spectroscopy coupled with chemometrics with DA, PCA and MLR or PCR can be used to analyse the presence of lard and quantify its percentage in cosmetic soap formulations.

    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared/methods
  7. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  8. Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S
    Environ Monit Assess, 2023 Jul 12;195(8):940.
    PMID: 37436672 DOI: 10.1007/s10661-023-11432-1
    Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  9. Khalil M, Hanif MA, Rashid U, Ahmad J, Alsalme A, Tsubota T
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81333-81351.
    PMID: 35710971 DOI: 10.1007/s11356-022-21367-8
    The hazardous dyes on mixing with water resources are affecting many life forms. Granite stone is popular worldwide for decorating floors, making other forms of decorative materials and items. Granite stone powder waste can be obtained free of cost from marble factories as factories spend on the disposal of this waste. In the present study, novel granite stone powder waste composite has been prepared and utilized for the effective removal of Terasil dye. Two types of granite including gray granite and white granite were used in pure, calcinized, and chemically modified forms. Freundlich adsorption isotherm model best explained the adsorption mechanism of dye removal using granite composites as compared to other adsorption isothermal models. Characterization techniques like scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used for the determination of morphological features and functional groups of granite composites. The obtained results were statistically analyzed using analysis of variance (ANOVA) along with the post hoc Tukey test. An extraordinarily high Terasil dye uptake capacity (more than 400 mg/g) was exhibited by granite composites prepared using sodium metasilicate. The synthesized novel nano-constructed composites provided a viable strategy as compared to the pure granite stone for dye removal from wastewater water.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  10. Al-Asadi ST, Al-Qaim FF, Al-Saedi HFS, Deyab IF, Kamyab H, Chelliapan S
    Environ Monit Assess, 2023 May 16;195(6):676.
    PMID: 37188926 DOI: 10.1007/s10661-023-11334-2
    Fig leaf, an environmentally friendly byproduct of fruit plants, has been used for the first time to treat of methylene blue dye. The fig leaf-activated carbon (FLAC-3) was prepared successfully and used for the adsorption of methylene blue dye (MB). The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET). In the present study, initial concentrations, contact time, temperatures, pH solution, FLAC-3 dose, volume solution, and activation agent were investigated. However, the initial concentration of MB was investigated at different concentrations of 20, 40, 80, 120, and 200 mg/L. pH solution was examined at these values: pH3, pH7, pH8, and pH11. Moreover, adsorption temperatures of 20, 30, 40, and 50 °C were considered to investigate how the FLAC-3 works on MB dye removal. The adsorption capacity of FLAC-3 was determined to be 24.75 mg/g for 0.08 g and 41 mg/g for 0.02 g. The adsorption process has followed the Langmuir isotherm model (R2 = 0.9841), where the adsorption created a monolayer covering the surface of the adsorbent. Additionally, it was discovered that the maximum adsorption capacity (Qm) was 41.7 mg/g and the Langmuir affinity constant (KL) was 0.37 L/mg. The FLAC-3, as low-cost adsorbents for methylene blue dye, has shown good cationic dye adsorption performance.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  11. Eid EEM, Almaiman AA, Alshehade SA, Alsalemi W, Kamran S, Suliman FO, et al.
    Molecules, 2023 May 15;28(10).
    PMID: 37241838 DOI: 10.3390/molecules28104096
    Thymoquinone (TQ) is a quinone derived from the black seed Nigella sativa and has been extensively studied in pharmaceutical and nutraceutical research due to its therapeutic potential and pharmacological properties. Although the chemopreventive and potential anticancer effects of TQ have been reported, its limited solubility and poor delivery remain the major limitations. In this study, we aimed to characterize the inclusion complexes of TQ with Sulfobutylether-β-cyclodextrin (SBE-β-CD) at four different temperatures (293-318 K). Additionally, we compared the antiproliferative activity of TQ alone to TQ complexed with SBE-β-CD on six different cancer cell lines, including colon, breast, and liver cancer cells (HCT-116, HT-29, MDA-MB-231, MCF-7, SK-BR-3, and HepG2), using an MTT assay. We calculated the thermodynamic parameters (ΔH, ΔS, and ΔG) using the van't Holf equation. The inclusion complexes were characterized by X-ray diffraction (XRD), Fourier transforms infrared (FT-IR), and molecular dynamics using the PM6 model. Our findings revealed that the solubility of TQ was improved by ≥60 folds, allowing TQ to penetrate completely into the cavity of SBE-β-CD. The IC50 values of TQ/SBE-β-CD ranged from 0.1 ± 0.01 µg/mL against SK-BR-3 human breast cancer cells to 1.2 ± 0.16 µg/mL against HCT-116 human colorectal cancer cells, depending on the cell line. In comparison, the IC50 values of TQ alone ranged from 0.2 ± 0.01 µg/mL to 4.7 ± 0.21 µg/mL. Overall, our results suggest that SBE-β-CD can enhance the anticancer effect of TQ by increasing its solubility and bioavailability and cellular uptake. However, further studies are necessary to fully understand the underlying mechanisms and potential side effects of using SBE-β-CD as a drug delivery system for TQ.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared/methods
  12. Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, et al.
    Chemosphere, 2023 May;323:138263.
    PMID: 36858116 DOI: 10.1016/j.chemosphere.2023.138263
    Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 μg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  13. Moradi H, Sabbaghi S, Mirbagheri NS, Chen P, Rasouli K, Kamyab H, et al.
    Environ Res, 2023 Apr 15;223:115484.
    PMID: 36775091 DOI: 10.1016/j.envres.2023.115484
    The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  14. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  15. Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, et al.
    Chemosphere, 2023 Apr;321:138000.
    PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000
    In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  16. Rashid T, Sher F, Jusoh M, Joya TA, Zhang S, Rasheed T, et al.
    Environ Res, 2023 Mar 01;220:115160.
    PMID: 36580987 DOI: 10.1016/j.envres.2022.115160
    Humic acid (HA) is a complex organic compound made up of small molecules. A variety of raw materials are used to manufacture HA, due to which the structure and composition of HA vary widely. In this study, nitric acid oxidation of two coal samples from Lakhra (Pakistan) was followed by HA extraction using 2.5, 3.0 and 3.5% KOH solutions. The impact of different operating parameters such as; the effect of KOH concentrations, KOH-coal proportion, extraction time and pH range influencing the HA extraction efficiency was optimally investigated. Commercial HA applications possess numerous challenges, including valuable applications and sub-optimal extraction techniques. A significant limitation of conventional experimental methods is that they can only investigate one component at a time. It is necessary to improve the current processing conditions, this can only be achieved by modelling and optimization of the process conditions to meet market demands. A comprehensive evaluation and prediction of HA extraction using Response Surface Methodology (RSM) are also being reported for the first time in this study. The maximum HA extraction efficiency of 89.32% and 87.04% for coal samples 1 and 2 respectively was achieved with the lowest possible pH of 1.09 (coal sample 1) and 1(coal sample 2), which is remarkably lower as compared to those reported in the literature for conventional alkaline extraction process. The model was evaluated for two coal samples through the coefficient of determination (R2), Root Means Square Error (RMSE), and Mean Average Error (MEE). The results of RSM for coal sample 1 (R2 = 0.9795, RMSE = 4.784) and coal sample 2 (R2 = 0.9758, RMSE = 4.907) showed that the model is well suited for HA extraction efficiency predictions. The derived humic acid from lignite coal was analyzed using elemental analysis, UV-Visible spectrophotometry and Fourier-transformed infrared (FTIR) spectroscopy techniques. Scanning Electron Microscopy (SEM) was applied to analyze the morphological modifications of the extracted HA after treatment with 3.5% KOH solution. For agricultural objectives, such as soil enrichment, enhancing plant growth conditions, and creating green energy solutions, this acquired HA can be made bioactive. This study not only establishes a basis for research into the optimized extraction of HA from lignite coal, but it also creates a new avenue for the efficient and clean use of lignite.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  17. Nor FHM, Abdullah S, Ibrahim Z, Nor MHM, Osman MI, Al Farraj DA, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):381-391.
    PMID: 35779113 DOI: 10.1007/s00449-022-02749-1
    An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  18. Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(14):40242-40259.
    PMID: 36604398 DOI: 10.1007/s11356-022-25064-4
    In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  19. Vejan P, Abdullah R, Ahmad N, Khadiran T
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38738-38750.
    PMID: 36585594 DOI: 10.1007/s11356-022-24970-x
    The oil palm kernel shell biochar (OPKS-B) and oil palm kernel shell activated carbon (OPKS-AC) were used as a framework to entrap urea using adsorption method. Batch adsorption studies were performed to gauge the influence of contact time on the adsorption of urea onto both OPKS-B and OPKS-AC. To evaluate the physicochemical traits of the studied materials, energy dispersive X-ray spectrometer (EDS), N2-sorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), elemental analysis, differential thermal gravity (TG/DTG) and thermal gravity were applied. Result shows OPKS-AC has a better sorption capacity for urea compared to OPKS-B. The Langmuir isotherm model better justified the sorption isotherms of urea. For the adsorption process for both OPKS-B and OPKS-AC, the pseudo-second-order kinetic model was picked as it best fitted the experimental sorption outcome with the superior R2 values of > 65.1% and > 74.5%, respectively. The outcome of the experiments showcased that the maximum monolayer adsorption capacity of the OPKS-AC towards urea was 239.68 mg/g. OPKS-AC has showed promising attributes to be picked as an organic framework in the production of controlled release urea fertiliser for a greener and environmentally friendly agricultural practices.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  20. Eff ARY, Huri HZ, Radji M, Mun'im A, Suyatna FD, Eden Y
    BMC Complement Med Ther, 2023 Feb 20;23(1):56.
    PMID: 36803524 DOI: 10.1186/s12906-023-03889-x
    BACKGROUND: Mahkota Dewa [Phaleria macrocarpa (Scheff) Boerl.] fruit in vitro and in- vivo can decrease and prevent elevation of the blood pressure, lower plasma glucose levels, possess an antioxidant effect, and recover liver and kidney damage in rats. This study aimed to determine the structure and inhibitory activity of angiotensin-converting enzyme inhibitors (ACE) from the Mahkota Dewa fruit.

    METHODS: The fruit powder was macerated using methanol and then partitioned by hexane, ethyl acetate, n-butanol, and water. The fractions were chromatographed on the column chromatography and incorporated with TLC and recrystallization to give pure compounds. The structures of isolated compounds were determined by UV-Visible, FT-IR, MS, proton (1H-NMR), carbon (13C-NMR), and 2D-NMR techniques encompassing HMQC and HMBC spectra. The compounds were evaluated for their ACE inhibitory activity, and the strongest compound was determined by the kinetics enzyme inhibition.

    RESULTS: Based on the spectral data, the isolated compounds were determined as 6,4-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside (1), 4,4'-dihydroxy-6-methoxybenzophenone-2-O-β-D-glucopyranoside (2) and mangiferin (3). IC50 values of the isolated compounds 1, 2 and 3 were 0.055, 0.07, and 0.025 mM, respectively.

    CONCLUSION: The three compounds have ACE inhibitor and mangiferin demonstrated the best ACE inhibitory activity with competitive inhibition on ACE with the type of inhibition kinetics is competitive inhibition.

    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links