Displaying publications 21 - 40 of 260 in total

Abstract:
Sort:
  1. Seow HF, Yip WK, Loh HW, Ithnin H, Por P, Rohaizak M
    Pathol Oncol Res, 2010 Jun;16(2):239-48.
    PMID: 19882362 DOI: 10.1007/s12253-009-9216-3
    Activation of Akt signaling pathway has been documented in various human malignancies, including breast carcinoma. The objective of this study is to determine the incidence of Akt phosphorylation in breast tumours and its relationship with expression of ER-alpha, ER-beta, HER2, Ki-67 and phosphorylated Bcl-2 associated death domain (p-BAD). Immunohistochemical staining was performed to detect these molecules on 43 paraffin-embedded breast tumour tissues with commercially available antibodies. Eighteen (41.9%), 3 (7.0%), 23 (53.5%), 35 (81.4%), 21 (48.8%), 29 (67.4%), and 34 (81.0%) of breast tumours were positive for nuclear ER-alpha, nuclear ER-beta, membranous HER2, cytonuclear p-Akt (Thr308), p-Akt (Ser473), p-BAD and Ki-67, respectively. ER-alpha expression was inversely correlated with HER2 and Ki-67 (P = 0.041 and P = 0.040, respectively). The p-Akt (Ser473) was correlated with increased level of p-BAD (Ser136) (P = 0.012). No relationship of Akt phosphorylation with HER2, ER-alpha or ER-beta was found. The p-Akt (Ser473) immunoreactivity was significantly higher in stage IV than in stage I or II (P = 0.036 or P = 0.009). The higher Ki-67 and lower ER-alpha expression showed an association with patient age of <50 years (P = 0.004) and with positive nodal status (P = 0.033), respectively. Our data suggest that the Akt phosphorylation and inactivation of its downstream target, BAD may play a role in survival of breast cancer cell. This study does not support the simple model of linear HER2/PI3K/Akt pathway in breast cancer.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism*
  2. Moktar NM, Yusof HM, Yahaya NH, Muhamad R, Das S
    Clin Ter, 2010;161(1):25-8.
    PMID: 20393674
    AIMS: The mRNA level for interleukin-6 (IL-6) is an important marker of osteoarthritis (OA). The present study aimed to investigate the level of IL-6 mRNA in the cartilage of OA knee while comparing it to the normal cartilage obtained from the same patient.
    MATERIALS AND METHODS: A total of 21 patients who underwent total knee replacement were recruited for this study. Sectioning of the destructive cartilage was performed in the medial part of the proximal tibiofemoral cartilage. The unaffected lateral part of the knee in the same patient, served as a control. The mRNA level for IL-6 was assessed using LightCycler 2.0 quantitative real-time polymerase chain reaction (qRT-PCR). actin mRNA was used as an endogenous control.
    RESULTS: Twelve out of 21 patients (57.1%) exhibited up regulation of IL-6 mRNA in the OA cartilage as compared to the normal cartilage. The rest of the patients (42.9%) showed down regulation of IL-6 mRNA. The statistical analysis showed there was insignificant level of IL-6 mRNA in the OA (1.91 +/- 0.45) as compared to the normal cartilage (1.13 +/- 0.44) (p > 0.05). The inter-individual variation in the level of IL-6 mRNA in the cartilage of idiopathic knee was in accordance with previous findings.
    CONCLUSIONS: These observations suggest IL-6 could also act as a catabolic agent in some patients or its expression might be influenced by other cytokines.
    Study site: Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Transcription Factors/metabolism
  3. Nurul Fariza Rossle, Mohamed Kamel Abd Ghani, Anisah Nordin, Yusof Suboh, Noraina Ab Rahim
    MyJurnal
    Kajian ini dijalankan untuk memencilkan Acanthamoeba spp. daripada pelbagai persekitaran akuatik di Semenanjung Malaysia. Sebanyak 160 sampel diambil dengan 140 sampel menggunakan kaedah swab manakala 20 sampel lagi menggunakan kaedah pensampelan air dengan botol Schott 500 ml yang steril. Sampel swab diambil daripada kepala paip air (50), sinki (50), serta kolam renang (40) manakala sampel air diambil dari laut. Sampel swab diinokulasi secara terus ke atas agar tanpa nutrien (NNA) yang dilapisi dengan Escherichia coli matian haba secara aseptik. Sampel air dituras menggunakan membran turas bersaiz liang 0.45 µm sebelum membran turas itu dipindahkan secara aseptik ke atas piring NNA yang dilapisi dengan E. coli matian haba. Semua piring dieram pada suhu 30°C dan diperiksa setiap hari untuk kehadiran Acanthamoeba spp. sehingga hari ke-14 sebelum disahkan negatif. Secara keseluruhannya, terdapat 20% sampel yang positif untuk kehadiran Acanthamoeba. Acanthamoeba spp. paling banyak dipencilkan daripada sampel air laut dengan peratusan sebanyak 40% manakala paling sedikit dipencilkan daripada swab paip air dengan peratusan sebanyak 4% sahaja. Pencilan positif Acanthamoeba spp. daripada sinki dan kolam renang masing-masing adalah 20% dan 30%. Ketiga-tiga kumpulan genus Acanthamoeba dalam bentuk sista dapat ditemui dalam sampel yang diambil.
    Matched MeSH terms: Transcription Factors
  4. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: Kruppel-Like Transcription Factors/genetics; Kruppel-Like Transcription Factors/metabolism; SOXB1 Transcription Factors/genetics; SOXB1 Transcription Factors/metabolism
  5. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Transcription Factors/genetics
  6. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: SOXB1 Transcription Factors/genetics; SOXB1 Transcription Factors/metabolism
  7. Wong MM, Cannon CH, Wickneswari R
    BMC Genomics, 2011;12:342.
    PMID: 21729267 DOI: 10.1186/1471-2164-12-342
    Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  8. Lim L, Chen KS, Krishnan S, Gole L, Ariffin H
    Br J Haematol, 2012 Jun;157(6):651.
    PMID: 22429121 DOI: 10.1111/j.1365-2141.2012.09091.x
    Matched MeSH terms: Transcription Factors/genetics*; Transcription Factors/metabolism
  9. Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR
    J Biosci Bioeng, 2012 Aug;114(2):220-7.
    PMID: 22578596 DOI: 10.1016/j.jbiosc.2012.03.021
    Human amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50 ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10 ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression.
    Matched MeSH terms: Transcription Factors/genetics
  10. Omidvar V, Abdullah SN, Ho CL, Mahmood M, Al-Shanfari AB
    Mol Biol Rep, 2012 Sep;39(9):8907-18.
    PMID: 22722992 DOI: 10.1007/s11033-012-1758-x
    Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
    Matched MeSH terms: Transcription Factors/genetics
  11. Zaatar AM, Lim CR, Bong CW, Lee MM, Ooi JJ, Suria D, et al.
    J Exp Clin Cancer Res, 2012 Sep 17;31:76.
    PMID: 22986368 DOI: 10.1186/1756-9966-31-76
    BACKGROUND: Treatment protocols for nasopharyngeal carcinoma (NPC) developed in the past decade have significantly improved patient survival. In most NPC patients, however, the disease is diagnosed at late stages, and for some patients treatment response is less than optimal. This investigation has two aims: to identify a blood-based gene-expression signature that differentiates NPC from other medical conditions and from controls and to identify a biomarker signature that correlates with NPC treatment response.

    METHODS: RNA was isolated from peripheral whole blood samples (2 x 10 ml) collected from NPC patients/controls (EDTA vacutainer). Gene expression patterns from 99 samples (66 NPC; 33 controls) were assessed using the Affymetrix array. We also collected expression data from 447 patients with other cancers (201 patients) and non-cancer conditions (246 patients). Multivariate logistic regression analysis was used to obtain biomarker signatures differentiating NPC samples from controls and other diseases. Differences were also analysed within a subset (n=28) of a pre-intervention case cohort of patients whom we followed post-treatment.

    RESULTS: A blood-based gene expression signature composed of three genes - LDLRAP1, PHF20, and LUC7L3 - is able to differentiate NPC from various other diseases and from unaffected controls with significant accuracy (area under the receiver operating characteristic curve of over 0.90). By subdividing our NPC cohort according to the degree of patient response to treatment we have been able to identify a blood gene signature that may be able to guide the selection of treatment.

    CONCLUSION: We have identified a blood-based gene signature that accurately distinguished NPC patients from controls and from patients with other diseases. The genes in the signature, LDLRAP1, PHF20, and LUC7L3, are known to be involved in carcinoma of the head and neck, tumour-associated antigens, and/or cellular signalling. We have also identified blood-based biomarkers that are (potentially) able to predict those patients who are more likely to respond to treatment for NPC. These findings have significant clinical implications for optimizing NPC therapy.

    Matched MeSH terms: Transcription Factors
  12. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: NFATC Transcription Factors/antagonists & inhibitors*
  13. Anbazhagan D, Mansor M, Yan GO, Md Yusof MY, Hassan H, Sekaran SD
    PLoS One, 2012;7(7):e36696.
    PMID: 22815678 DOI: 10.1371/journal.pone.0036696
    Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.
    Matched MeSH terms: Transcription Factors/genetics*
  14. Ong SS, Wickneswari R
    PLoS One, 2012;7(11):e49662.
    PMID: 23251324 DOI: 10.1371/journal.pone.0049662
    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.
    Matched MeSH terms: Transcription Factors/metabolism
  15. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Transcription Factors/metabolism; Paired Box Transcription Factors/metabolism
  16. Shuid AN, Mohamed N, Mohamed IN, Othman F, Suhaimi F, Mohd Ramli ES, et al.
    PMID: 22973403 DOI: 10.1155/2012/696230
    Nigella sativa seeds (NS) has been used traditionally for various illnesses. The most abundant and active component of NS is thymoquinone (TQ). Animal studies have shown that NS and TQ may be used for the treatment of diabetes-induced osteoporosis and for the promotion of fracture healing. The mechanism involved is unclear, but it was postulated that the antioxidative, and anti-inflammatory activities may play some roles in the treatment of osteoporosis as this bone disease has been linked to oxidative stress and inflammation. This paper highlights studies on the antiosteoporotic effects of NS and TQ, the mechanisms behind these effects and their safety profiles. NS and TQ were shown to inhibit inflammatory cytokines such as interleukin-1 and 6 and the transcription factor, nuclear factor κB. NS and TQ were found to be safe at the current dosage for supplementation in human with precautions in children and pregnant women. Both NS and TQ have shown potential as antiosteoporotic agent but more animal and clinical studies are required to further assess their antiosteoporotic efficacies.
    Matched MeSH terms: Transcription Factors
  17. Harun MH, Sepian SN, Chua KH, Ropilah AR, Abd Ghafar N, Che-Hamzah J, et al.
    Hum. Cell, 2013 Mar;26(1):35-40.
    PMID: 21748521 DOI: 10.1007/s13577-011-0025-0
    The anterior surface of the eye is covered by several physically contiguous but histologically distinguishable epithelia overlying the cornea, limbus, bulbar conjunctiva, fornix conjunctiva, and palpebral conjunctiva. The self-renewing nature of the conjunctival epithelia makes their long-term survival ultimately dependent on small populations of stem cells. Hence, the objective of this study was to investigate the expression of the stem cell genes Sox2, OCT4, NANOG, Rex1, NES, and ABCG2 in cultured human conjunctival epithelium from different conjunctival zones, namely, the bulbar, palpebral and fornix zones. Three samples were taken from patients with primary pterygium and cataract (age range 56-66 years) who presented to our eye clinic at the UKM Medical Centre. The eye was examined with slit lamp to ensure there was no underlying ocular surface diseases and glaucoma. Conjunctival tissue was taken from patients who underwent a standard cataract or pterygium operation as a primary procedure. Tissues were digested, cultured, and propagated until an adequate number of cells was obtained. Total RNA was extracted and subjected to expression analysis of conjunctival epithelium genes (KRT4, KRT13, KRT19) and stem cell genes (Sox2, OCT4, NANOG, Rex1, NES, ABCG2) by reverse transcriptase-PCR and 2% agarose gel electrophoresis. The expression of Sox2, OCT4, and NANOG genes were detected in the fornical cells, while bulbar cells only expressed Sox2 and palpebral cells only expressed OCT4. Based on these results, the human forniceal region expresses a higher number of stem cell genes than the palpebral and bulbar conjunctiva.
    Study site: Eye clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: SOXB1 Transcription Factors
  18. Daneshvar N, Abdullah R, Shamsabadi FT, How CW, Mh MA, Mehrbod P
    Cell Biol Int, 2013 May;37(5):415-9.
    PMID: 23504853 DOI: 10.1002/cbin.10051
    Nanotechnology has provided new technological opportunities, which could help in challenges confronting stem cell research. Polyamidoamine (PAMAM) dendrimers, a new class of macromolecular polymers with high molecular uniformity, narrow molecular distribution specific size and shape and highly functionalised terminal surface have been extensively explored for biomedical application. PAMAM dendrimers are also nanospherical, hyperbranched and monodispersive molecules exhibiting exclusive properties which make them potential carriers for drug and gene delivery.
    Matched MeSH terms: Transcription Factors/metabolism
  19. Ma RC, Hu C, Tam CH, Zhang R, Kwan P, Leung TF, et al.
    Diabetologia, 2013 Jun;56(6):1291-305.
    PMID: 23532257 DOI: 10.1007/s00125-013-2874-4
    AIMS/HYPOTHESIS: Most genetic variants identified for type 2 diabetes have been discovered in European populations. We performed genome-wide association studies (GWAS) in a Chinese population with the aim of identifying novel variants for type 2 diabetes in Asians.

    METHODS: We performed a meta-analysis of three GWAS comprising 684 patients with type 2 diabetes and 955 controls of Southern Han Chinese descent. We followed up the top signals in two independent Southern Han Chinese cohorts (totalling 10,383 cases and 6,974 controls), and performed in silico replication in multiple populations.

    RESULTS: We identified CDKN2A/B and four novel type 2 diabetes association signals with p 

    Matched MeSH terms: Paired Box Transcription Factors/genetics*
  20. Moad AI, Muhammad TS, Oon CE, Tan ML
    Cell Biochem Biophys, 2013 Jul;66(3):567-87.
    PMID: 23300026 DOI: 10.1007/s12013-012-9504-5
    Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links