Majority of the representative drugs customarily interact with multiple targets manifesting unintended side effects. In addition, drug resistance and over expression of the cellular efflux-pumps render certain classes of drugs ineffective. With only a few innovative formulations in development, it is necessary to identify pharmacophores and novel strategies for creating new drugs. The conjugation of dissimilar pharmacophoric moieties to design hybrid molecules with an attractive therapeutic profile is an emerging paradigm in the contemporary drug development regime. The recent decade witnessed the remarkable biological potential of 1,3,5-triazine framework in the development of various chemotherapeutics. The appending of the 1,3,5-triazine nucleus to biologically relevant moieties has delivered exciting results. The present review focuses on 1,3,5-triazine based hybrid molecules in the development of pharmaceuticals.
New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
Material designs that use donor and acceptor units are often found in organic optoelectronic devices. Molecular level insight into the interactions between donors and acceptors are crucial for understanding how such interactions can modify the optical properties of the organic optoelectronic materials. In this paper, tris(4-(tert-butyl)phenyl)amine (pTPA) was synthesized as a donor in order to compare with unmodified triphenylamine (TPA) in a donor-acceptor system by having 2,4,6-triphenyl-1,3,5-triazine (TRZ) as an acceptor. Dimerization of donors and acceptors occurred in solvent when the concentration of solute is high. At 0 K, using a polarizable continuum model, the nitrogen atom of TPA is found to stack on top of the center of triazine of TRZ, whereas such alignment is offset in pTPA and TRZ. We attributed such alignment in TPA-TRZ as the result of attractive interactions between partial localization of 2pz electrons at the nitrogen atom of TPA and the π deficiency of triazine in TPA-TRZ. By taking into account random motions of the solvent effect at 300 K in quantum molecular dynamics and classical molecular dynamics simulations to interpret the marked difference in emission spectra between TPA-TRZ and pTPA-TRZ, it was revealed that the attractive interaction between pTPA and TRZ in toluene is weaker than TPA and TRZ. Because of the weaker attractive interaction between pTPA and TRZ in toluene, the dimers adopted numerous ground state conformations resulting in broad emission bands superimposed with multiple small Gaussian peaks. This is in contrast to TPA-TRZ which has only one dominant dimer conformation. This study demonstrates that the strength of intermolecular interactions between donors and acceptors should be taken into consideration in designing supramolecular structures.
A new, effective one-pot synthesis of the 6, N2-diaryl-1,3,5-triazine-2,4-diamines under microwave irradiation was developed. The method involved an initial three-component condensation of cyanoguanidine, aromatic aldehydes, and arylamines in the presence of hydrochloric acid. Without isolation, the resulting 1,6-diaryl-1,6-dihydro-1,3,5-triazine-2,4-diamines were treated with a base to initiate Dimroth rearrangement and spontaneous dehydrogenative aromatization, affording the desired compounds. The developed method was found to be sufficiently general in scope, tolerating various aromatic aldehydes and amines; by using their combinations in the first step, a representative library of 110 compounds was successfully prepared and screened for anticancer properties.
As sulfate-radical (SR)-based advanced oxidation processes are increasingly implemented, Oxone has been frequently-used for generation of SR. While Co3O4 nanoparticle (NP) has been widely-accepted as a promising catalyst for activating Oxone, Co3O4 NPs tend to aggregate in water, losing their reactivity. Thus, many attempts have immobilized Co3O4 NPs on supports, especially carbonaceous substrates, because combination of Co NPs with carbon substrates offers synergistic effects for boosting catalytic activities. Moreover, carbon substrates doped with hetero-atoms (N and S) further increase electron transfer and reactivity. Therefore, it is even promising to immobilize Co NPs onto N/S-doped carbon (NSC) to form Co-embedded NSC (denoted as CoNSC) for enhancing Oxone activation. In this study, a convenient and facile technique is proposed to prepare such a CoNSC via a simple carbonization treatment of a coordination polymer of Co and trithiocyanuric acid (TTCA). The resulting CoNSC exhibits the sheet-like hexagonal morphology with the core-shell configuration, and Co NPs are well-embedded into the N/S-doped carbonaceous matrix, making it an advantageous heterogeneous catalyst for Oxone activation. As Azorubine S (ARS) decolorization is employed as a model reaction of Oxone activation, CoNSC exhibits a higher catalytic activity than pristine Co3O4 and NSC for Oxone activation to decolorize ARS. In comparison to the other reported catalysts, CoNSC also possesses a much lower Ea for ARS decolorization. CoNSC can be also reusable and stable for Oxone activation over multiple cycles without loss of catalytic activity. These features validate that CoNSC is a promising and useful Co-based catalyst for Oxone activation.
Irgarol 1051 and diuron are photosystem II inhibitors in agricultural activities and antifouling paints in the shipping sector. This study focused on three major ports (western, southern, and eastern) surrounding Peninsular Malaysia to construct the distribution of both biocides on the basis of the seasonal and geographical changes. Surface seawater samples were collected from November 2011 to April 2012 and pretreated using the solid-phase extraction technique followed by quantification with GC-MS and LC-MS-MS for Irgarol 1051 and diuron, respectively. Generally, the distribution of Irgarol 1051 was lowest during November 2011 and highest during April 2012, and similar patterns were observed at all ports, whereas the distribution of diuron was rather vague. The increasing pattern of Irgarol 1051 from time to time is probably related to its accumulation in the seawater as a result of its half-life and consistent utilization. On the basis of the discriminant analysis, the temporal distribution of Irgarol 1051 varied at Klang North Port, Klang South Port, and Pasir Gudang Port, whereas diuron was temporally varied only at Kemaman Port. Furthermore, Irgarol 1051 was spatially varied during November 2011, whereas diuron did not show any significant changes throughout all sampling periods. Ecological risk assessment exhibited a high risk for diuron and Irgarol 1051, but Irgarol 1051 should be of greater concern because of its higher risk compared to that of diuron. Thus, it is recommended that the current Malaysian guidelines and regulations of biocide application should be reevaluated and improved to protect the ecosystem, as well as to prevent ecological risks to the aquatic environment.
A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model.
The use of antifouling paints to the boats and ships is one among the threats facing coastal resources including coral reefs in recent decades. This study reports the current contamination status of diuron and its behaviour in the coastal waters of Malaysia. The maximum concentration of diuron was 285 ng/L detected at Johor port. All samples from Redang and Bidong coral reef islands were contaminated with diuron. Temporal variation showed relatively high concentrations but no significant difference (P>0.05) during November and January (North-East monsoon) in Klang ports (North, South and West), while higher levels of diuron were detected during April, 2012 (Inter monsoon) in Kemaman, and Johor port. Although no site has shown concentration above maximum permissible concentration (430 ng/L) as restricted by the Dutch Authorities, however, long term exposure studies for environmental relevance levels of diuron around coastal areas should be given a priority in the future.
Purines can be considered as the most ubiquitous and functional N-heterocyclic compounds in nature. Structural modifications of natural purines, particularly using isosteric ring systems, have been in the focus of many drug discovery programs. Fusion of 1,3,5-triazine ring with pyrrole, pyrazole, imidazole, 1,2,3-triazole or 1,2,4-triazole results in seven bicyclic heterocyclic systems isosteric to purine. Application of the isosterism concept for the development of new compounds with therapeutic potential in areas involving purinergic regulation or purine metabolism led to significant advances in medicinal chemistry of the azolo[1,3,5]triazines. These 1,3,5-triazine-based purine-like scaffolds significantly increase level of molecular diversity and allow covering chemical space in the important areas of medicinal chemistry. Some of these azolo[1,3,5]triazine systems have become privileged scaffolds in the development of inhibitors of various kinases, phosphodiesterase, xanthine oxidase, and thymidine phosphorylase, antagonists of adenosine and corticotropin-releasing hormone receptors, anticancer and antiviral agents.
Emerging booster biocides contamination raises particular attention in the marine ecosystem health. This study provides the baseline data on the occurrence of Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamiono-s-triazine) in the selected coastal water around Malaysia. The maximum detected concentration of Irgarol was 2021 ng/L at Klang West, commercial and cargo port. Coral reef Islands (Redang and Bidong) were relatively less contaminated compared to other coastal areas. The temporal variation revealed that only 1% of 28 stations sampled on November, 2011 was above the environmental risk limit of 24 ng/L as suggested by Dutch Authorities, while in January and April, 2012; 46% and 92% of the stations were above the limit respectively. The present findings demonstrate the wide detection of novel antifouling materials Irgarol-1051 which advocates the need for proper monitoring and conservation strategies for the coastal resources.
Exposure of Plasmodium falciparum to increasing sublethal drug concentrations followed by drug treatment led to the development of many resistant parasites. Therefore, the susceptibility of these clones to the type II antifolate drugs, cycloguanil and pyrimethamine, before and after subculturing them in vitro for a period of 3 years, was studied.
The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process.
An observational study of all children with intractable epilepsy at the Paediatric Institute prescribed Lamotrigine as an add-on therapy between January 1994 and November 1998 was conducted. A total of 30 children were recruited. Three had adverse effects to the drug and it was withdrawn. Of the remaining 27, there were 20 boys and 7 girls, ranging from 2 to 17 years. Fifteen children had generalised epilepsy, 6 had partial epilepsy, 2 had West syndrome and 4 had Lennox Gastaut syndrome. Six children (20%) became seizure free, and 14 (54%) had a greater than 50% reduction in seizure frequency. However 7 children (23%) did not respond and 3 experienced a deterioration in seizure severity. Nine children were noted to have an improvement in alertness and behaviour. Our small series suggests that Lamotrigine is useful as add-on therapy in childhood intractable epilepsy.
Various species of local wood modified with N-(3-chloro-2-hydroxypropyl)-trimethylammonium chloride showed sorption enhancement for hydrolyzed Reactive Blue 2 (HRB) compared to the untreated samples. The enthalpy of sorption of HRB on Simpoh (Dillenia suffruticosa) was found to be endothermic. Maximum sorption capacity calculated from the Langmuir isotherm was 250.0 mg/g. Under continuous flow conditions HRB could be successfully removed. Dye removal was a function of bed depth and flow rate. However, the bed depth service time model of Bohart and Adams was not applicable in the HRB-quaternized wood system. The modified wood was applied to a sample of industrial textile effluent, and it was found to be able to remove the color successfully under batch conditions.
Six clones were derived from each Plasmodium falciparum isolate obtained from Malaysia, Africa and Thailand and were characterized against type II antifolate drugs, cycloguanil and pyrimethamine using the modified in vitro microtechnique. Results showed that these isolates were of a heterogeneous population, with 50% inhibitory concentrations of Gombak A clones at 0.0151-0.1450 and 0.0068-0.1158 microM, Gambian clones at 0.0056-0.1792 and 0.0004-0.0068 microM and TGR clones at 0.0103-0.0703 and 0.0776-0.3205 microM against cycloguanil and pyrimethamine, respectively. All clones displayed similar susceptibilities as their parent isolates except A/D3, A/D5, A/G4 and A/H7 clones which were sensitive to cycloguanil at 0.0735, 0.0151, 0.0540 and 0.0254 microM but Gm/B2 clone was resistant at 0.1792 microM, respectively. However, A/D3, TGR/B4, TGR/B7, TGR/C4, TGR/C7 and TGR/H2 clones were resistant to pyrimethamine at 0.1158, 0.1070, 0.1632, 0.1580, 0.2409 and 0.3205 microM, respectively. Further results indicated that they were pure clones compared to their parent isolates as their drug susceptibility studies were statistically different (p < 0.05).
Six clones were derived from each Malaysian Plasmodium falciparum isolate and characterized for their susceptibilities against type II antifolate drugs, cycloguanil and pyrimethamine. Results showed that these isolates were of a heterogeneous population, with average IC50 values of Gombak C clones at 0.012-0.084 microM and 0.027-0.066 microM, ST 9 clones at 0.019-0.258 microM and 0.027-0.241 microM, ST 12 clones at 0.015-0.342 microM and 0.012-0.107 microM, ST 85 clones at 0.022-0.087 microM and 0.024-0.426 microM, and ST 148 clones at 0.027-0312 microM and 0.029-0.690 microM against cycloguanil and pyrimethamine, respectively. Generally, most of these clones displayed susceptibility patterns similar to their parent isolates except ST 9/A4, ST 9/A7, ST 9/B5, ST 9/D9, ST 9/D10, ST 148/A4, ST 148/A5, ST 148/A7, ST 148/F7, ST 148/F8 clones, which were sensitive at 0.027 microM, 0.019 microM, 0.022 microM, 0.063 microM, 0.037 microM, 0.031 microM, 0.042, microM, 0.042 microM, 0.062 microM, and 0.027 microM, whereas, ST 12/D7 clone was resistant at 0.342 microM, against cycloguanil respectively. However, ST 9/A4, ST 9/D8, ST 12/D5, ST 85/A5, ST 85/B3, ST 85/B4, ST 85/D3, ST 85/D7, ST 148/A6, and ST 148/A7 clones were resistant to pyrimethamine at 0.158 microM, 0.241 microM, 0.107 microM, 0.223 microM, 0.393 microM, 0.402 microM, 0.426 microM, 0.115 microM, 0.690 microM, and 0.520 microM, respectively.
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl.