Displaying publications 21 - 40 of 363 in total

Abstract:
Sort:
  1. Lo GL, Bagramian RA
    Community Dent Oral Epidemiol, 1996 Feb;24(1):25-7.
    PMID: 8833510
    Prevalence and severity of dental fluorosis was assessed in 1739 Singaporean children aged 9, 12 and 16 yr in three different ethnic groups. All subjects had resided since birth in Singapore, which has a tropical climate. The water supply was fluoridated in 1957 at a level of 0.7 ppm. In this sample, mouth prevalence was 82.6%, tooth prevalence was 66.9%, the community fluorosis index was at 1.96; 9.2% of children had severe fluorosis and 26.2% had moderate fluorosis. There were no significant gender or racial differences. Prevalences were higher than those reported in most other studies. Due to differences in indices used and methodology, comparisons could not be made directly with other studies.
    Matched MeSH terms: Tropical Climate
  2. Runnie I, Salleh MN, Mohamed S, Head RJ, Abeywardena MY
    J Ethnopharmacol, 2004 Jun;92(2-3):311-6.
    PMID: 15138017
    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
    Matched MeSH terms: Tropical Climate
  3. Hara H, Yusaimi YA, Zulkeflle SNM, Sugiura N, Iwamoto K, Goto M, et al.
    J Gen Appl Microbiol, 2019 Jan 24;64(6):284-292.
    PMID: 29877296 DOI: 10.2323/jgam.2018.02.003
    The emergence of antibiotic resistance among multidrug-resistant (MDR) microbes is of growing concern, and threatens public health globally. A total of 129 Escherichia coli isolates were recovered from lowland aqueous environments near hospitals and medical service centers in the vicinity of Kuala Lumpur, Malaysia. Among the eleven antibacterial agents tested, the isolates were highly resistant to trimethoprim-sulfamethoxazole (83.7%) and nalidixic acid (71.3%) and moderately resistant to ampicillin and chloramphenicol (66.7%), tetracycline (65.1%), fosfomycin (57.4%), cefotaxime (57.4%), and ciprofloxacin (57.4%), while low resistance levels were found with aminoglycosides (kanamycin, 22.5%; gentamicin, 21.7%). The presence of relevant resistance determinants was evaluated, and the genotypic resistance determinants were as follows: sulfonamides (sulI, sulII, and sulIII), trimethoprim (dfrA1 and dfrA5), quinolones (qnrS), β-lactams (ampC and blaCTX-M), chloramphenicol (cmlA1 and cat2), tetracycline (tetA and tetM), fosfomycin (fosA and fosA3), and aminoglycosides (aphA1 and aacC2). Our data suggest that multidrug-resistant E. coli strains are ubiquitous in the aquatic systems of tropical countries and indicate that hospital wastewater may contribute to this phenomenon.
    Matched MeSH terms: Tropical Climate
  4. Kim M, Kim WS, Tripathi BM, Adams J
    Microb Ecol, 2014 May;67(4):837-48.
    PMID: 24549745 DOI: 10.1007/s00248-014-0380-y
    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial community of tropical forest litter may be partly a product of its differing chemistry, although the unvarying climate might also play a role, as might interactions with other organisms such as fungi. The single genus Burkholderia may be seen as potentially playing a major role in decomposition and nutrient cycling in tropical forests, but apparently not in temperate forests.
    Matched MeSH terms: Tropical Climate
  5. Sadiq LS, Hashim Z, Osman M
    J Environ Public Health, 2019;2019:9896410.
    PMID: 31061664 DOI: 10.1155/2019/9896410
    Background: Heat stress disorders may cause negative health outcome and subsequent productivity reduction especially in those who work under direct sunlight for an extended number of hours.

    Objective: This study assessed the impact of heat on the health and productivity among maize farmers in a hot tropical country.

    Methods: A cross-sectional study was conducted among 396 maize farmers, randomly selected across Gombe province, Nigeria. The wet bulb globe temperature monitor (WBGT) Model QuesTemp036 was used in determining the heat index. Health was determined using a validated questionnaire, while productivity was determined by recording work output based on the number of ridges cultivated during the working hours.

    Results: The farms recorded mean heat index with standard deviation (SD) of 31.56 (2.19) and 34.08 (1.54) in the hours of 9 am to 12 pm and 12-3 pm respectively, which exceeded the threshold level set by the ACGIH. Heavy sweating (93.2%), tiredness (48.5%), dizziness (34.1%), and headache (40.4%) were experienced by the respondents almost on daily basis. The finding further showed a significant difference in the farmers' productivity during the three time duration of the work day (p < 0.001). The productivity was significantly higher between the hours of 6-9 am (p < 0.001) and 12-3 pm (p < 0.001), compared to the hours of 9 am to 12 pm (p < 0.001). The factors that significantly predict the productivity outcome include temperature (p < 0.001), gender (p < 0.001), age (p=0.033), and BMI (p=0.008).

    Conclusion: The farmers were frequently experiencing heat exhaustion which decreased their productivity.

    Matched MeSH terms: Tropical Climate
  6. Barati A, Ghaderpour A, Chew LL, Bong CW, Thong KL, Chong VC, et al.
    Int J Environ Res Public Health, 2016 Apr 15;13(4):426.
    PMID: 27092516 DOI: 10.3390/ijerph13040426
    Klebsiella pneumoniae is an opportunistic pathogen that is responsible for causing nosocomial and community-acquired infections. Despite its common presence in soil and aquatic environments, the virulence potential of K. pneumoniae isolates of environmental origin is largely unknown. Hence, in this study, K. pneumoniae isolated from the estuarine waters and sediments of the Matang mangrove estuary were screened for potential virulence characteristics: antibiotic susceptibility, morphotype on Congo red agar, biofilm formation, presence of exopolysaccharide and capsule, possession of virulence genes (fimH, magA, ugE, wabG and rmpA) and their genomic fingerprints. A total of 55 strains of K. pneumoniae were isolated from both human-distributed sites (located along Sangga Besar River) and control sites (located along Selinsing River) where less human activity was observed, indicated that K. pneumoniae is ubiquitous in the environment. However, the detection of potentially virulent strains at the downstream of Kuala Sepetang village has suggested an anthropogenic contamination source. In conclusion, the findings from this study indicate that the Matang mangrove estuary could harbor potentially pathogenic K. pneumoniae with risk to public health. More studies are required to compare the environmental K. pneumoniae strains with the community-acquired K. pneumoniae strains.
    Matched MeSH terms: Tropical Climate
  7. Tan YF, Teng CL, Chua KB, Voon K
    J Infect Dev Ctries, 2017 Mar 31;11(3):215-219.
    PMID: 28368854 DOI: 10.3855/jidc.9112
    INTRODUCTION: Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that has spilled over from bats to humans. Though initially found only in bats, further case studies have found viable virus in ill patients.

    METHODOLOGY: PubMed was queried with the keywords of Nelson Bay orthoreovirus OR Pteropine orthoreovirus OR Melaka orthoreovirus OR Kampar orthoreovirus, and returned 17 hits.

    RESULTS: Based on prevalence studies, the presence of PRV has been reported in Malaysia and Vietnam, both developing countries. Other case reports also provide further evidence of the presence of PRV in the Southeast Asian region. Despite the absence of PRV in their home countries, travellers from Hong Kong and Japan to Indonesia have returned to their countries ill with this virus, indicating that local communities in Indonesia might be affected by this virus.

    CONCLUSIONS: This work aims to bring to light this emerging zoonotic respiratory virus circulating among developing countries in Southeast Asia. To improve the understanding of PRV of the medical and scientific community in the Southeast Asian region, this work introduces the general features of PRV, reports of imported PRV, prevalence, and clinical features of PRV. Gaps in knowledge about PRV have also been identified in this work, and we hope that future studies can be undertaken to improve our understanding of this virus.

    Matched MeSH terms: Tropical Climate
  8. Venugopal Y, Hatta SFWM, Musa N, Rahman SA, Ratnasingam J, Paramasivam SS, et al.
    Asia Pac J Clin Nutr, 2017 May;26(3):412-420.
    PMID: 28429905 DOI: 10.6133/apjcn.042016.10
    BACKGROUND AND OBJECTIVES: Vitamin D3 (cholecalciferol) dose required to maintain sufficiency in non- Caucasian women with postmenopausal osteoporosis (PMO) inthe tropics has not been well studied. Some guidelines mandate 800-1000 IU vitamin D/day but the Endocrine Society (US) advocates 1500-2000 IU/day to maintain 25-hydroxyvitamin-D (25(OH)D) concentration at >75 nmol/L. We aimed to establish oral cholecalciferol dose required to maintain 25(OH)D concentration at >75 nmol/L in PMO Chinese Malaysian women, postulating lower dose requirements amongst light-skinned subjects in the tropics.

    METHODS AND STUDY DESIGN: 90 Chinese Malaysian PMO women in Kuala Lumpur, Malaysia (2°30'N) with baseline serum 25(OH)D levels >=50 nmol/L were recruited. Prior vitamin D supplements were discontinued and subjects randomized to oral cholecalciferol 25,000 IU/4-weekly (Group-A) or 50,000 IU/4-weekly (Group- B) for 16 weeks, administered under direct observation. Serum 25(OH)D, PTH, serum/urinary calcium were measured at baseline, 8 and 16 weeks.

    RESULTS: Baseline characteristics, including osteoporosis severity, sun exposure (~3 hours/week), and serum 25(OH)D did not differ between treatment arms. After 16 weeks, 91% of women sufficient at baseline, remained sufficient on 25,000 IU/4-weekly compared with 97% on 50,000 IU/4-weekly with mean serum 25(OH)D 108.1±20.4 and 114.7±18.4 SD nmol/L respectively (p=0.273). At trial's end, 39% and 80% of insufficient women at baseline attained sufficiency in Group A and Group B (p=0.057). Neither dose was associated with hyperparathyroidism or toxicity.

    CONCLUSIONS: Despite pretrial vitamin D supplementation and adequate sun exposure, 25.6% Chinese Malaysian PMO women were vitamin D insufficient indicating sunshine alone cannot ensure sufficiency in the tropics. Both ~900 IU/day and ~1800 IU/day cholecalciferol can safely maintain vitamin D sufficiency in >90% of Chinese Malaysian PMO women. Higher doses are required with baseline concentration <75 nmol/L.
    Matched MeSH terms: Tropical Climate
  9. Mullin SW, Colley FC, Welch QB
    PMID: 806971
    Matched MeSH terms: Tropical Climate
  10. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
    Matched MeSH terms: Tropical Climate
  11. Lim FL, Hashim Z, Than LTL, Md Said S, Hashim JH, Norbäck D
    Int J Tuberc Lung Dis, 2019 11 01;23(11):1171-1177.
    PMID: 31718753 DOI: 10.5588/ijtld.18.0668
    OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO₂) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.
    Matched MeSH terms: Tropical Climate
  12. van der Ent A, Edraki M
    Environ Geochem Health, 2018 Feb;40(1):189-207.
    PMID: 27848090 DOI: 10.1007/s10653-016-9892-3
    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
    Matched MeSH terms: Tropical Climate
  13. Bolton JM
    Am J Clin Nutr, 1972 Aug;25(8):789-99.
    PMID: 5046724
    Matched MeSH terms: Tropical Climate
  14. Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, et al.
    Microbes Environ, 2019 Jun 27;34(2):161-168.
    PMID: 31019143 DOI: 10.1264/jsme2.ME18117
    Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains.
    Matched MeSH terms: Tropical Climate
  15. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM
    Appl Environ Microbiol, 2013 Dec;79(23):7290-7.
    PMID: 24056463 DOI: 10.1128/AEM.02541-13
    Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.
    Matched MeSH terms: Tropical Climate
  16. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Tropical Climate
  17. Liau KF, Shoji T, Ong YH, Chua AS, Yeoh HK, Ho PY
    Bioprocess Biosyst Eng, 2015 Apr;38(4):729-37.
    PMID: 25381606 DOI: 10.1007/s00449-014-1313-3
    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links