Displaying publications 21 - 40 of 396 in total

Abstract:
Sort:
  1. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al.
    Ecotoxicol Environ Saf, 2019 Oct 30;182:109362.
    PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045
    In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Wu YL, Wang XH, Li YY, Hong HS, Li HY, Yin MD
    Huan Jing Ke Xue, 2009 Sep 15;30(9):2512-9.
    PMID: 19927796
    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core collected from Langkawi Island of the Andaman Sea, Malaysia were determined by GC/MS, the vertical variations of concentration and distributions of PAHs were investigated. In combining with 210Pb-dating, the PAHs sedimentary record in the last 100 years was reconstructed and their possible sources were also discussed. The sigmaPAH concentration ranged from 13.2-60.1 ng x g(-1) in the whole sedimentary section (0-56 cm) with the dominant compounds of phenanthrene, naphthalene and perylene. The sediments contaminated to a lesser extent comparing with the surrounding waters. Before the 1920s, the concentrations of PAHs were considered to be the background level, which was implied from the natural inputs. The historical records of PAHs in the core showed that two distinct peaks which represented the input time of 1960s and 1980s, respectively, inferred that there were some relatively dramatically land-based inputs, and human activities leaded a clear impact to these waters during these periods. Furthermore, PAHs diagnostic ratios indicated that PAHs in the core sediments were mainly of pyrolytic origin (combustion), accompanied with minor petroleum origin. These were related with agriculture, industry, ocean import and export, and shipping activities in the surrounding regions. Meanwhile as the vital communication line, the marine transportation of the Strait of Malacca had influenced the environmental quality of the Andaman Sea. Meanwhile, based on the sedimentary record, PAHs concentrations were found to correlate positively with humanism activities and socioeconomic development (Gross Domestic Production) in the surrounding regions.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Wong YJ, Shimizu Y, He K, Nik Sulaiman NM
    Environ Monit Assess, 2020 Sep 16;192(10):644.
    PMID: 32935203 DOI: 10.1007/s10661-020-08543-4
    The assessment of surface water quality is often laborious, expensive and tedious, as well as impractical, especially for the developing and middle-income countries in the ASEAN region. The application of the water quality index (WQI), which depends on several independent key parameters, has great potential and is a useful tool in this region. Therefore, this study aims to find out the spatial variability of various water quality parameters in geographical information system (GIS) environment and perform a comparative study among the ASEAN WQI systems. At present, there are four ASEAN countries which have implemented the WQI system to evaluate their surface water quality, which are (i) Own WQI system-Malaysia, Thailand and Vietnam-and (ii) Adopted WQI system: Indonesia. A spatial distribution of 12 water quality parameters in the Selangor river basin, Malaysia, was plotted and then applied into the different ASEAN WQI systems. The WQI values obtained from the different WQI systems have an appreciable difference, even for the same water samples due to the disparity in the parameter selection and the standards among them. WQI systems which consider all biophysicochemical parameters provide a consistent evaluation (Very Poor), but the system which either considers physicochemical or biochemical parameters gives a relatively lenient evaluation (Fair-Poor). The Selangor river basin is stressed and impacted by all physical, biological and chemical parameters caused by both the aridity of the climate and anthropogenic activities. Therefore, it is crucial to include all these aspects into the evaluation and corresponding actions should be taken.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(1):116-134.
    PMID: 27822691 DOI: 10.1007/s11356-016-7951-z
    The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Wong KK, Lee CK, Low KS, Haron MJ
    Chemosphere, 2003 Jan;50(1):23-8.
    PMID: 12656225
    A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al.
    Proc Natl Acad Sci U S A, 2022 Feb 22;119(8).
    PMID: 35165193 DOI: 10.1073/pnas.2113947119
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  7. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Total Environ, 2019 Jun 25;671:431-442.
    PMID: 30933799 DOI: 10.1016/j.scitotenv.2019.03.243
    Endocrine disrupting compounds (EDCs) are an emerging environmental concern and commonly occur as a mixture of compounds. The EDC mixture can be more toxic than any single compound. The present study analyses EDCs in surface water in the case of an urban tropical river, the Langat River, using the multiresidue analytical method of solid phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). The Langat River is used as a drinking water source and is treated for Malaysian drinking water supply. A total of 14 EDCs i.e. five hormones, seven pharmaceuticals, one pesticide, and one plasticizer were detected. Caffeine was observed to be highest at 19.33 ng/L, followed by bisphenol A and diclofenac at 8.24 ng/L and 6.15 ng/L, respectively. Using a conservative risk quotient (RQ) method, EDCs were estimated for having negligible risks under acute and chronic exposure (RQ water raises concerns about potential human exposure to EDCs via dietary intake i.e. food and drinking water supply. Although the ecological risks are considered negligible, these risks should not be neglected in terms of future prioritization and risk management. Improvements in water quality monitoring and risk assessment in water source protection are required to support a multibarrier approach to managing drinking water supply systems for safe water supply. The present study proposes a risk management and monitoring framework for EDCs to support the aforementioned multibarrier approach.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Rep, 2020 10 20;10(1):17755.
    PMID: 33082440 DOI: 10.1038/s41598-020-74061-5
    Contamination by endocrine disrupting compounds (EDCs) concerns the security and sustainability of a drinking water supply system and human exposure via water consumption. This study analyzed the selected EDCs in source (river water, n = 10) and supply (tap water, n = 155) points and the associated risks. A total of 14 multiclass EDCs was detected in the drinking water supply system in Malaysia. Triclosan (an antimicrobial agent) and 4-octylphenol (a plasticizer) were only detected in the tap water (up to 9.74 and 0.44 ng/L, respectively). Meanwhile, chloramphenicol and 4-nonylphenol in the system were below the method detection limits. Bisphenol A was observed to be highest in tap water at 66.40 ng/L (detection: 100%; median concentration: 0.28 ng/L). There was a significant difference in triclosan contamination between the river and tap water (p water supply system regarding treatment sustainability and water security. Further exploration of smart monitoring and management using Big Data and Internet of Things and the need to invent rapid, robust, sensitive, and efficient sensors is warranted.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of water pollutants. Diclofenac accounted for the highest concentration (21.39 ng/L), followed by triclosan and ciprofloxacin (9.74 ng/L and 8.69 ng/L, respectively). Caffeine was observed in all field samples with the highest distribution at 35.32%. Caffeine and triclosan exhibited significantly different distributions in household tap water (p water; however, the estimated risk was negligible (risk quotient water quality monitoring indicators for water resource conservation and water supply safety related to emerging organic contaminants; thus, API detection is important for safeguarding the environment and human health.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:575-581.
    PMID: 28917209 DOI: 10.1016/j.chemosphere.2017.09.035
    Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ  1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Watanabe A, Tsutsuki K, Inoue Y, Maie N, Melling L, Jaffé R
    Sci Total Environ, 2014 Sep 15;493:220-8.
    PMID: 24946034 DOI: 10.1016/j.scitotenv.2014.05.095
    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Wang AJ, Bong CW, Xu YH, Hassan MHA, Ye X, Bakar AFA, et al.
    Mar Pollut Bull, 2017 Dec 15;125(1-2):492-500.
    PMID: 28807422 DOI: 10.1016/j.marpolbul.2017.08.010
    To understand the source-to-sink of pollutants in the Kelantan River estuary and the adjacent shelf area in Malaysia, a total of 42 surface sediment samples were collected in the Kelantan River-estuary-shelf system to analyze for grain size, total organic carbon (TOC) content, Al and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb). The surficial sediments were mainly composed of clayey silt and the TOC content in sediments decreased from the river to the shelf. The surficial sediments experienced Pb pollution; Cr only showed a certain level of pollution in the coastal area of the estuary but not in other areas, and Ni, Cu, Zn, and Cd showed no pollution. The heavy metals mainly originated from natural weathering and erosion of rocks and soils in the catchment and enriched near the river mouth. Total organic carbon can promote the enrichment of heavy metals in sediments.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Wan Ibrahim WA, Veloo KV, Sanagi MM
    J Chromatogr A, 2012 Mar 16;1229:55-62.
    PMID: 22326188 DOI: 10.1016/j.chroma.2012.01.022
    A novel sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was produced and applied as sorbent for solid phase extraction (SPE). Five selected organophosphorus pesticides (OPPs) were employed as model compounds to evaluate the extraction performance of the synthesized sol-gel organic-inorganic hybrid MTMOS-TEOS. Analysis was performed using gas chromatography-mass spectrometry. Several important SPE parameters were optimized. Under the optimum extraction conditions, the method using the sol-gel organic-inorganic hybrid MTMOS-TEOS as SPE sorbent showed good linearity in the range of 0.001-1 μg L(-1), good repeatability (RSD 2.1-3.1%, n=5), low limits of detection at S/N=3 (0.5-0.9 pg mL(-1)) and limit of quantification (1-3 pg mL(-1), S/N=10). The performance of the MTMOS-TEOS SPE was compared to commercial C18 Supelclean SPE since C18 SPE is widely used for OPPs. The MTMOS-TEOS SPE method LOD was 500-600 × lower than the LOD of commercial C18 SPE. The LOD achieved with the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent allowed the detection of these OPPs in drinking water well below the level set by European Union (EU) at 0.1 μg L(-1) of each pesticides. The developed MTMOS-TEOS SPE method was successfully applied to real sample analysis of the selected OPPs from several water samples and its application extended to the analysis of several fruits samples. Excellent recoveries and RSDs of the OPPs were obtained from the various water samples (recoveries: 97-111%, RSDs 0.4-2.8%, n=3) and fruit samples (recoveries: 96-111%), RSDs 1-4%, n=5) using the sol-gel organic-inorganic hybrid MTMOS-TEOS SPE sorbent. Recoveries and RSDs of OPPs from river water samples and fruit samples using C18 Supelclean SPE sorbent were 91-97%, RSD 0.9-2.6, n=3 and 86-96%, RSD 3-8%, n=5, respectively). The novel sol-gel hybrid MTMOS-TEOS SPE sorbent demonstrate the potential as an alternative inexpensive extraction sorbent for OPPs with higher sensitivity for the OPPs.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  14. Wan Abdul Ghani WMH, Abas Kutty A, Mahazar MA, Al-Shami SA, Ab Hamid S
    Environ Monit Assess, 2018 Apr 19;190(5):297.
    PMID: 29675764 DOI: 10.1007/s10661-018-6675-6
    In order to evaluate the water quality of one of the most polluted urban river in Malaysia, the Penchala River, performance of eight biotic indices, Biomonitoring Working Party (BMWP), BMWPThai, BMWPViet, Average Score Per Taxon (ASPT), ASPTThai, BMWPViet, Family Biotic Index (FBI), and Singapore Biotic Index (SingScore), was compared. The water quality categorization based on these biotic indices was then compared with the categorization of Malaysian Water Quality Index (WQI) derived from measurements of six water physicochemical parameters (pH, BOD, COD, NH3-N, DO, and TSS). The river was divided into four sections: upstream section (recreational area), middle stream 1 (residential area), middle stream 2 (commercial area), and downstream. Abundance and diversity of the macroinvertebrates were the highest in the upstream section (407 individual and H' = 1.56, respectively), followed by the middle stream 1 (356 individual and H' = 0.82). The least abundance was recorded in the downstream section (214 individual). Among all biotic indices, BMWP was the most reliable in evaluating the water quality of this urban river as their classifications were comparable to the WQI. BMWPs in this study have strong relationships with dissolved oxygen (DO) content. Our results demonstrated that the biotic indices were more sensitive towards organic pollution than the WQI. BMWP indices especially BMWPViet were the most reliable and could be adopted along with the WQI for assessment of water quality in urban rivers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  15. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  16. Vasanthakumari Sivasankara Pillai A, Sabarathinam C, Keesari T, Chandrasekar T, Rajendiran T, Senapathi V, et al.
    Environ Sci Pollut Res Int, 2020 Jun;27(16):20037-20054.
    PMID: 32236808 DOI: 10.1007/s11356-020-08258-6
    Hydrogeochemical understanding of groundwater is essential for the effective management of groundwater. This study has been carried out to have concrete data for the seasonal variations in hydrogeochemistry of groundwater in central Tamilnadu forming a complex geological terrain with a varied lithology. A total of 244 groundwater samples were collected during four different seasons, viz, southwest monsoon (SWM), summer (SUM), postmonsoon (POM), and northeast monsoon (NEM) from bore wells. The physical parameters such as pH, temperature, TDS, ORP, humidity, and electrical conductivity (EC) were measured insitu, whereas major ions were analyzed in the lab adopting standard procedures. Overall, higher EC and NO3 values were observed and exceeded the WHO permissible limit irrespective of seasons, except for NO3 in SWM. Na and HCO3 are the dominant cation and anion in the groundwater irrespective of seasons. The highest average values of Na (65.06 mg L-1) and HCO3 (350.75 mg L-1) were noted during SWM. Statistical analysis was carried out to elucidate the hydrogeochemistry of the region. Initially, to understand the ionic relationship, correlation matrix was used followed by factor analysis for determination of major geochemical control and later factor scores were derived to understand the regional representations. An attempt has also been made to identify the samples influenced by multiple geochemical processes and to understand their spatial variation in the study period. Correlation of geochemical parameters reveals a excellent positive correlation between Ca and NO3 in SUM, SWM, and NEM due to the dominant of anthropogenic sources and minor influence of weathering process. Strongly loaded factor scores are found to be mostly in the following order POM > NEM > SWM > SUM. Principal component analysis of different seasons indicates the interplay of natural weathering and anthropogenic factors. Overall, the predominant geochemical processes in this region, irrespective of seasons are weathering and, ion exchange and anthropogenic activities.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Vaezzadeh V, Zakaria MP, Shau-Hwai AT, Ibrahim ZZ, Mustafa S, Abootalebi-Jahromi F, et al.
    Mar Pollut Bull, 2015 Nov 15;100(1):311-320.
    PMID: 26323864 DOI: 10.1016/j.marpolbul.2015.08.034
    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. Usman UA, Yusoff I, Raoov M, Hodgkinson J
    Environ Geochem Health, 2020 Oct;42(10):3079-3099.
    PMID: 32180058 DOI: 10.1007/s10653-020-00543-0
    The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10-6 to 10-4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2-/SO42- redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  19. Usman S, Abdull Razis AF, Shaari K, Amal MNA, Saad MZ, Mat Isa N, et al.
    Int J Environ Res Public Health, 2020 Dec 21;17(24).
    PMID: 33371479 DOI: 10.3390/ijerph17249591
    Technological advances, coupled with increasing demands by consumers, have led to a drastic increase in plastic production. After serving their purposes, these plastics reach our water bodies as their destination and become ingested by aquatic organisms. This ubiquitous phenomenon has exposed humans to microplastics mostly through the consumption of sea food. This has led the World Health Organization (WHO) to make an urgent call for the assessment of environmental pollution due to microplastics and its effect on human health. This review summarizes studies between 1999 and 2020 in relation to microplastics in aquatic ecosystems and human food products, their potential toxic effects as elicited in animal studies, and policies on their use and disposal. There is a paucity of information on the toxicity mechanisms of microplastics in animal studies, and despite their documented presence in food products, no policy has been in place so far, to monitor and regulates microplastics in commercial foods meant for human consumption. Although there are policies and regulations with respect to plastics, these are only in a few countries and in most instances are not fully implemented due to socioeconomic reasons, so they do not address the problem across the entire life cycle of plastics from production to disposal. More animal research to elucidate pathways and early biomarkers of microplastic toxicity that can easily be detected in humans is needed. This is to create awareness and influence policies that will address this neglected threat to food safety and security.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  20. Uba G, Manogaran M, Gunasekaran B, Halmi MIE, Shukor MYA
    PMID: 33227985 DOI: 10.3390/ijerph17228585
    Potentially toxic metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tools with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using response surface methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Toxic metals strongly inhibit this hydrolysis. A central composite design (CCD) was utilized to optimize the detection of toxic metals. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to one-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 (mg/L) from 0.060 (95% CI, 0.030-0.080) to 0.017 (95% CI, 0.016-0.019), from 0.098 (95% CI, 0.077-0.127) to 0.028 (95% CI, 0.022-0.037) and from 0.040 (95% CI, 0.035-0.045) to 0.023 (95% CI, 0.020-0.027), for mercury, silver and copper, respectively. A near-real time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4 h interval for a total of 24 h and validated by instrumental analysis, with the result revealing an absence of mercury pollution in the sampling site.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links