Displaying publications 21 - 40 of 396 in total

Abstract:
Sort:
  1. Padrilah SN, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Khalid A, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(28):22510-22523.
    PMID: 28804856 DOI: 10.1007/s11356-017-9923-3
    The release of pollutants, especially heavy metals, into the aquatic environment is known to have detrimental effects on such an environment and on living organisms including humans when those pollutants are allowed to enter the food chain. The aim of this study is to analyse the damage to Clarias gariepinus' liver caused by exposure to different concentrations of copper. In the present study, samples of C. gariepinus were exposed to sub-lethal copper sulphate (CuSO4) concentrations (from 0.2 to 20.0 mg/L) for 96 h. Physiological and behavioural alterations were observed with respect to their swimming pattern, mucus secretion and skin colour. Mortality was also observed at high concentrations of copper. Histopathological alterations of the liver were analysed under light, transmission and scanning electron microscopies. The liver of the untreated group showed normal tissue structures, while histopathological abnormalities were observed in the treated fish under light and electron microscopes with increased copper concentrations. Histopathological abnormalities include necrosis, melanomacrophage, hepatic fibrosis and congested blood vessels. In addition, the enzyme activity of liver cholinesterase (ChE) was also found to be affected by copper sulphate, as 100% of cholinesterase activity was inhibited at 20.0 mg/L. Thus, liver enzyme activity and histopathological changes are proven to be alternative sources for biomarkers of metal toxicity.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  2. Mohebbi-Nozar SL, Zakaria MP, Ismail WR, Mortazawi MS, Salimizadeh M, Momeni M, et al.
    Mar Pollut Bull, 2015 Jun 15;95(1):407-11.
    PMID: 25843439 DOI: 10.1016/j.marpolbul.2015.03.037
    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Tajul Baharuddin MF, Taib S, Hashim R, Zainal Abidin MH, Ishak MF
    Environ Monit Assess, 2011 Sep;180(1-4):345-69.
    PMID: 21136290 DOI: 10.1007/s10661-010-1792-x
    Time-lapse resistivity measurements and groundwater geochemistry were used to study salinity effect on groundwater aquifer at the ex-promontory-land of Carey Island in Malaysia. Resistivity was measured by ABEM Terrameter SAS4000 and ES10-64 electrode selector. Relationship between earth resistivity and total dissolved solids (TDS) was derived, and with resistivity images, used to identify water types: fresh (ρ ( e ) > 6.5 Ω m), brackish (3 Ω m < ρ ( e ) < 6.5 Ω m), or saline (ρ ( e ) < 3 Ω m). Long-term monitoring of the studied area's groundwater quality via measurements of its time-lapse resistivity showed salinity changes in the island's groundwater aquifers not conforming to seawater-freshwater hydraulic gradient. In some aquifers far from the coast, saline water was dominant, while in some others, freshwater 30 m thick showed groundwater potential. Land transformation is believed to have changed the island's hydrogeology, which receives saltwater pressure all the time, limiting freshwater recharge to the groundwater system. The time-lapse resistivity measurements showed active salinity changes at resistivity-image bottom moving up the image for two seasons' (wet and dry) conditions. The salinity changes are believed to have been caused by incremental tide passing through highly porous material in the active-salinity-change area. The study's results were used to plan a strategy for sustainable groundwater exploration of the island.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  6. Jong VS, Tang FE
    Water Sci Technol, 2015;72(1):84-91.
    PMID: 26114275 DOI: 10.2166/wst.2015.186
    In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  7. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Hussein MZ, Zainal Z, Yaziz I, Beng TC
    PMID: 11413839
    Layered double hydroxide of Mg-Al-carbonate system (MACH) was prepared and its heat-treated product (MACHT) was obtained by calcination at 500 degrees C. The resulting materials were used as an adsorbent for removal of color from synthetic textile wastewater (STW) and textile wastewater (TWW). Batch kinetic study showed that these materials are an efficient adsorbent for textile dye. The maximum adsorption capacities between 16 to 32 mg of dyes per g of adsorbent was obtained by fitting the adsorption data to the Langmuir adsorption Isotherm. It was found that the adsorption capacity of MACHT is higher than MACH.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Elias MS, Ibrahim S, Samuding K, Rahman SA, Hashim A
    Mar Pollut Bull, 2018 Dec;137:646-655.
    PMID: 30503479 DOI: 10.1016/j.marpolbul.2018.11.006
    In this study, concentrations of heavy metals, rare earth elements (REEs), Uranium (U) and Thorium (Th) of the actinide group were determined from Linggi estuary sediment samples by neutron activation analysis (NAA) and inductive coupled plasma - mass spectrometry techniques. The geo-accumulation (Igeo) and ecological risk index (Ri) values were calculated to identify the quality status of Linggi estuary sediments. Results indicated Linggi estuary was polluted by arsenic (As), lead (Pb) and antimony (Sb). REEs, U and Th showed significant increase of concentration in Linggi estuary sediments. Ri of Linggi estuary was categorised as low to considerable ecological risk, which indicates no significant to moderate effect on the majority of the sediment-dwelling organisms. Correlation matrix and principal component analysis assessed pollution sources to be both natural and anthropogenic.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Kusin FM, Rahman MS, Madzin Z, Jusop S, Mohamat-Yusuff F, Ariffin M, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(2):1306-1321.
    PMID: 27771881 DOI: 10.1007/s11356-016-7814-7
    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  12. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2004;16(1):54-63.
    PMID: 18839869
    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  13. Ahmad NI, Noh MF, Mahiyuddin WR, Jaafar H, Ishak I, Azmi WN, et al.
    Environ Sci Pollut Res Int, 2015 Sep;22(17):12960-74.
    PMID: 25916470 DOI: 10.1007/s11356-015-4415-9
    This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P > 0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Khalit WNAW, Tay KS
    Ecotoxicol Environ Saf, 2017 Nov;145:214-220.
    PMID: 28738204 DOI: 10.1016/j.ecoenv.2017.07.020
    Unmetabolized pharmaceuticals often enter the water treatment plants and exposed to various treatment processes. Among these water treatment processes, disinfection is a process which involves the application of chemical oxidation to remove pathogen. Untreated pharmaceuticals from primary and secondary treatment have the potential to be exposed to the chemical oxidation process during disinfection. This study investigated the kinetics and mechanism of the degradation of sotalol during chlorination process. Chlorination with hypochlorous acid (HOCl) as main reactive oxidant has been known as one of the most commonly used disinfection methods. The second order rate constant for the reaction between sotalol and free available chlorine (FAC) was found to decrease from 60.1 to 39.1M-1min-1 when the pH was increased from 6 to 8. This result was mainly attributed by the decreased of HOCl concentration with increasing pH. In the real water samples, the presence of the higher amount of organic content was found to reduce the efficiency of chlorination in the removal of sotalol. This result showed that sotalol competes with natural organic matter to react with HOCl during chlorination. After 24h of FAC exposure, sotalol was found to produce three stable transformation by-products. These by-products are mainly chlorinated compounds. According to the acute and chronic toxicity calculated using ECOSAR computer program, the transformation by-products are more harmful than sotalol.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 15;15(10):459-68.
    PMID: 24187900
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Titiwangsa Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using hydrolab data sonde 4 and surveyor 4 a water quality multi probe (USA). Six metals i.e., cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), perkin elmer elan, model 9000. The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Said KS, Shuhaimi-Othman M, Ahmad AK
    Pak J Biol Sci, 2012 May 01;15(9):437-47.
    PMID: 24163953
    A study of water quality parameters (temperature, conductivity, total dissolved solid, dissolved oxygen, pH and water hardness) in Ampang Hilir Lake was conducted in January, April, July and October 2010. The water quality parameters were tested and recorded at different sampling stations chosen randomly using Hydrolab Data Sonde 4 and Surveyor 4 a water quality multi probe (USA). Six metals which were cadmium, chromium, lead, nickel, zinc and copper were determined in five different compartments of the lake namely water, total suspended solids, plankton, sediment and fish. The metals concentration were determined by Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Perkin Elmer Elan, model 9000.The water quality parameters were compared with National Water Quality Standard (NWQS Malaysia) while metal concentrations were compared with Malaysian and international standards. The study shows that water quality parameters are of class 2. This condition is suitable for recreational activities where body contact is allowed and suitable for sensitive fishing activities. Furthermore, metal concentrations were found to be lower than the international standards, therefore toxic effects for these metals would be rarely observed and the adverse effects to aquatic organisms would not frequently occur.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  18. Yusof AM, Rahman NA, Wood AK
    Biol Trace Elem Res, 1994;43-45:239-49.
    PMID: 7710833
    Trace elements, such as As, Co, Cr, Hg, Sb, and Zn, were determined by neutron activation analysis (NAA), whereas Cd, Cu, and Pb were determined by graphite furnace atomic absorption spectroscopy (GFAAS) in clam, crab, prawn, swamp cerith, and mussel samples after digestion by microwave heating under controlled conditions before eluting the solutions through a column of a chelating resin, Chelex-100. The standard used in the determination of percentage volatile elements retained by microwave digestion and also in the activation process was Lobster Hepatopancreas TORT-1, whereas known mixed standards were prepared from nitrate salts to determine the efficiency of the separation procedure at a controlled pH. Mercury and lead detected in crabs exceeded the maximum permissible level. Some species also showed a high affinity toward certain elements, and their levels of accumulation in the tissues of these species corresponded with the concentration of these elements in sediments, especially at sites in the vicinity of an industrial zone.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  19. Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S
    Chem Rec, 2016 06;16(3):1591-634.
    PMID: 27230414 DOI: 10.1002/tcr.201500279
    Graphene (GR) and its derivatives are promising materials on the horizon of nanotechnology and material science and have attracted a tremendous amount of research interest in recent years. The unique atom-thick 2D structure with sp(2) hybridization and large specific surface area, high thermal conductivity, superior electron mobility, and chemical stability have made GR and its derivatives extremely attractive components for composite materials for solar energy conversion, energy storage, environmental purification, and biosensor applications. This review gives a brief introduction of GR's unique structure, band structure engineering, physical and chemical properties, and recent energy-related progress of GR-based materials in the fields of energy conversion (e.g., photocatalysis, photoelectrochemical water splitting, CO2 reduction, dye-sensitized and organic solar cells, and photosensitizers in photovoltaic devices) and energy storage (batteries, fuel cells, and supercapacitors). The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing, and removal of heavy-metal ions is presented. Additionally, the use of graphene composites in the biosensing field is discussed. We conclude the review with remarks on the challenges, prospects, and further development of GR-based materials in the exciting fields of energy, environment, and bioscience.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  20. Hussain H, Yusoff MK, Ramli MF, Abd Latif P, Juahir H, Zawawi MA
    Pak J Biol Sci, 2013 Nov 15;16(22):1524-30.
    PMID: 24511695
    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links