Displaying publications 21 - 40 of 261 in total

Abstract:
Sort:
  1. Tan YF, Teng CL, Chua KB, Voon K
    J Infect Dev Ctries, 2017 Mar 31;11(3):215-219.
    PMID: 28368854 DOI: 10.3855/jidc.9112
    INTRODUCTION: Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that has spilled over from bats to humans. Though initially found only in bats, further case studies have found viable virus in ill patients.

    METHODOLOGY: PubMed was queried with the keywords of Nelson Bay orthoreovirus OR Pteropine orthoreovirus OR Melaka orthoreovirus OR Kampar orthoreovirus, and returned 17 hits.

    RESULTS: Based on prevalence studies, the presence of PRV has been reported in Malaysia and Vietnam, both developing countries. Other case reports also provide further evidence of the presence of PRV in the Southeast Asian region. Despite the absence of PRV in their home countries, travellers from Hong Kong and Japan to Indonesia have returned to their countries ill with this virus, indicating that local communities in Indonesia might be affected by this virus.

    CONCLUSIONS: This work aims to bring to light this emerging zoonotic respiratory virus circulating among developing countries in Southeast Asia. To improve the understanding of PRV of the medical and scientific community in the Southeast Asian region, this work introduces the general features of PRV, reports of imported PRV, prevalence, and clinical features of PRV. Gaps in knowledge about PRV have also been identified in this work, and we hope that future studies can be undertaken to improve our understanding of this virus.

    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/pathology; Zoonoses/virology*
  2. Leong WJ, Quek XF, Tan HY, Wong KM, Muhammad HS, Mohamed NA, et al.
    J Med Virol, 2022 02;94(2):771-775.
    PMID: 34708881 DOI: 10.1002/jmv.27422
    Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.
    Matched MeSH terms: Zoonoses/blood; Zoonoses/transmission*; Zoonoses/virology
  3. Ong BL, Ngeow YF, Razak MF, Yakubu Y, Zakaria Z, Mutalib AR, et al.
    Epidemiol Infect, 2013 Jul;141(7):1481-7.
    PMID: 23414617 DOI: 10.1017/S0950268813000265
    A cross-sectional study was conducted from 10 January to 9 April 2012, to determine the seroprevalence of tuberculosis (TB) of all captive Asian elephants and their handlers in six locations in Peninsular Malaysia. In addition, trunk-wash samples were examined for tubercle bacillus by culture and polymerase chain reaction (PCR). For 63 elephants and 149 elephant handlers, TB seroprevalence was estimated at 20.4% and 24.8%, respectively. From 151 trunkwash samples, 24 acid-fast isolates were obtained, 23 of which were identified by hsp65-based sequencing as non-tuberculous mycobacteria. The Mycobacterium tuberculosis-specific PCR was positive in the trunk-wash samples from three elephants which were also seropositive. Conversely, the trunk wash from seven seropositive elephants were PCR negative. Hence, there was evidence of active and latent TB in the elephants and the high seroprevalence in the elephants and their handlers suggests frequent, close contact, two-way transmission between animals and humans within confined workplaces.
    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/transmission
  4. Khoo BY, Lim KGE, Chia JWZ, Chavatte JM, Ong KH, De PP, et al.
    J Clin Microbiol, 2022 05 18;60(5):e0168621.
    PMID: 35583365 DOI: 10.1128/jcm.01686-21
    Matched MeSH terms: Zoonoses
  5. Uppal PK
    Ann N Y Acad Sci, 2000;916:354-7.
    PMID: 11193645
    A pig-borne virus causing viral encephalitis amongst human beings in Malaysia was detected in 1997 by the Ministry of Health. Initially, the disease was considered to be Japanese encephalitis. Subsequently, it was thought to be a Hendra-like viral encephalitis, but on 10th April, 1999 the Minister of Health announced this mysterious and deadly virus to be a new virus named Nipah virus. The virus was characterized at CDC, Atlanta, Georgia. The gene sequencing of the enveloped virus revealed that one of the genes had 21% difference in the nucleotide sequence with about 8% difference in the amino acid sequence from Hendra virus isolated from horses in Australia in 1994. The virus was named after the village Nipah. In all, the Ministry of Health declared 101 human casualties, and 900,000 pigs were culled by April, 1999. The worst affected area in Malaysia was Negri Sembilan. The symptoms, incubation period in human being and pigs, animal to human transmission, threat of disease to other livestock, and control program adopted in Malaysia is described.
    Matched MeSH terms: Zoonoses/transmission; Zoonoses/virology
  6. Ngoi ST, Thong KL
    Diagn Microbiol Infect Dis, 2013 Dec;77(4):304-11.
    PMID: 24139970 DOI: 10.1016/j.diagmicrobio.2013.09.004
    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common causative agent of non-typhoidal salmonellosis in Malaysia. We aimed to characterize S. Enteritidis isolated from humans and animals by analyzing their antimicrobial resistance profiles and genotypes. A total of 111 strains were characterized using multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and antimicrobial susceptibility testing. Both typing methods revealed that genetically similar S. Enteritidis strains had persisted among human and animal populations within the period of study (2003-2008). Only 39% of the strains were multi-drug resistant (i.e., resistant to 3 or more classes of antimicrobial agents), with a majority (73%) of these in low-risk phase (multiple antibiotic resistant index <0.20). Limited genetic diversity among clinical and zoonotic S. Enteritidis suggested that animals are possible sources of human salmonellosis. The degree of multi-drug resistance among the strains was generally low during the study period.
    Matched MeSH terms: Zoonoses/microbiology*
  7. Mokhtar AS, Tay ST
    Am J Trop Med Hyg, 2011 Nov;85(5):931-3.
    PMID: 22049052 DOI: 10.4269/ajtmh.2011.10-0634
    The presence of Rickettsia felis, Bartonella henselae and B. clarridgeiae in 209 fleas (Ctenocephalides felis) obtained from domestic cats and dogs in several locations in Malaysia was investigated in this study. Using a polymerase chain reaction specific for the citrate synthase (gltA) and 17-kD antigenic protein (17kD) genes of rickettsiae, we detected R. felis DNA in 6 (2.9%) fleas. For detection of bartonellae, amplification of the heme-binding protein (pap31) and riboflavin synthase (ribC) genes identified B. henselae and B. clarridgeiae DNA in 24 (11.5%) and 40 (19.1%) fleas, respectively. The DNA of B. henselae and B. clarridgeiae was detected in 10 (4.8%) fleas. Two B. henselae genogroups (Marseille and Houston-1) were detected in this study; genogroup Marseille (genotype Fizz) was found more often in the fleas. The findings in this study suggest fleas as potential vectors of rickettsioses and cat-scratch disease in this country.
    Matched MeSH terms: Zoonoses
  8. Jalas M, Tavalla M
    Trop Biomed, 2018 Dec 01;35(4):944-950.
    PMID: 33601843
    Cryptosporidium parasites can infect a wide range of vertebrate hosts including reptiles, mammals, and birds. Due to the zoonotic nature of cryptosporidiosis and its close contact with exotic birds and humans, the present study aimed to determine the prevalence and genetic diversity of Cryptosporidium spp. in exotic birds of southwest of Iran, by the staining and molecular methods. In the present research, 369 stool specimens were randomly collected from exotic birds and stained by modified acid-fast stain using Ziehl-Neelsen method. The slides were examined using light microscopy at a magnification of 100X. Then, the extracted DNA was amplified using the PCR method. Finally, all genotypes and positive samples from PCR assay were sequenced by Bioneer Company (Daejeon, South Korea). Among 369 stool specimens, 25 and 27 cases were found to be positive for Cryptosporidium spp. by the modified Ziehl-Neelsen staining and the PCR methods, respectively. Based on the genotyping, C. avian genotype III and C. meleagridis were detected in 25 and 2 stool samples, respectively. The results revealed a relatively high prevalence of Cryptosporidium spp. in exotic birds in the southwest of Iran. Due to the zoonotic nature of C. meleagridis, these exotic birds can be a significant source of cryptosporidiosis. It is important that high-risk people, including immune-deficient patients, receive correct information about the risk of indirect and direct contact with infected exotic birds.
    Matched MeSH terms: Zoonoses
  9. Saeed N, Khoo CS, Remli R, Law ZK, Periyasamy P, Osman SS, et al.
    Front Neurol, 2018;9:966.
    PMID: 30564184 DOI: 10.3389/fneur.2018.00966
    Leptospirosis is a spirochetal zoonotic disease with a wide clinical spectrum, often underdiagnosed especially when presented as an acute neurological manifestation. We report a case of a 24-year-old man with serologically positive leptospirosis, who presented with altered sensorium, seizures and subsequently developed cortical blindness. His brain MRI revealed bilateral occipital and later parietal lobe cerebritis.
    Matched MeSH terms: Zoonoses
  10. Tan DS
    Malays J Pathol, 1981 Aug;4:19-27.
    PMID: 7186600
    Matched MeSH terms: Zoonoses/epidemiology*
  11. Wong KT, Shieh WJ, Zaki SR, Tan CT
    Springer Semin. Immunopathol., 2002;24(2):215-28.
    PMID: 12503066
    The Nipah virus outbreak represented one of several bat-derived paramyxoviruses that has emerged during the last decade to cause severe human and animal disease. The pathogenesis of Nipah infection is associated with its ability to infect blood vessels and extravascular parenchyma in many organs, particularly in the central nervous system. The clinical manifestations of acute Nipah infection range from fever and mild headache to a severe acute encephalitic syndrome in which there is a high mortality. Much remains to be understood about this new disease, including its intriguing ability to cause relapsing encephalitis in some survivors. This review provides an overview of the Nipah outbreak, focussing on what is presently known about it as an infectious disease, including the clinical aspects, pathology and pathogenesis.
    Matched MeSH terms: Zoonoses/virology*
  12. Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, et al.
    PLoS Negl Trop Dis, 2021 Jan;15(1):e0009110.
    PMID: 33493205 DOI: 10.1371/journal.pntd.0009110
    Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
    Matched MeSH terms: Zoonoses/epidemiology*
  13. Tambyah PA
    Singapore Med J, 1999 May;40(5):329-30.
    PMID: 10489488
    Matched MeSH terms: Zoonoses*
  14. Lysaght T, Capps B, Bailey M, Bickford D, Coker R, Lederman Z, et al.
    PLoS One, 2017;12(1):e0170967.
    PMID: 28129409 DOI: 10.1371/journal.pone.0170967
    BACKGROUND: One Health (OH) is an interdisciplinary collaborative approach to human and animal health that aims to break down conventional research and policy 'silos'. OH has been used to develop strategies for zoonotic Emerging Infectious Diseases (EID). However, the ethical case for OH as an alternative to more traditional public health approaches is largely absent from the discourse. To study the ethics of OH, we examined perceptions of the human health and ecological priorities for the management of zoonotic EID in the Southeast Asia country of Singapore.

    METHODS: We conducted a mixed methods study using a modified Delphi technique with a panel of 32 opinion leaders and 11 semi-structured interviews with a sub-set of those experts in Singapore. Panellists rated concepts of OH and priorities for zoonotic EID preparedness planning using a series of scenarios developed through the study. Interview data were examined qualitatively using thematic analysis.

    FINDINGS: We found that panellists agreed that OH is a cross-disciplinary collaboration among the veterinary, medical, and ecological sciences, as well as relevant government agencies encompassing animal, human, and environmental health. Although human health was often framed as the most important priority in zoonotic EID planning, our qualitative analysis suggested that consideration of non-human animal health and welfare was also important for an effective and ethical response. The panellists also suggested that effective pandemic planning demands regional leadership and investment from wealthier countries to better enable international cooperation.

    CONCLUSION: We argue that EID planning under an OH approach would benefit greatly from an ethical ecological framework that accounts for justice in human, animal, and environmental health.

    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/psychology
  15. Uni S, Fukuda M, Otsuka Y, Hiramatsu N, Yokobayashi K, Takahashi H, et al.
    Parasit Vectors, 2015;8:59.
    PMID: 25623081 DOI: 10.1186/s13071-015-0655-2
    Zoonotic infections with Onchocerca species are uncommon, and to date only 25 clinical cases have been reported worldwide. In Japan, five previous zoonotic infections were concentrated in Oita, Kyushu (the southern island), with one previous case in Hiroshima in the western part of Honshu (the main island). The causative agent in Japan was identified as Onchocerca dewittei japonica Uni, Bain & Takaoka, 2001 from Japanese wild boars (Sus scrofa leucomystax Temminck, 1842). Here we report two infections caused by a female and male O. dewittei japonica, respectively, among residents of Hiroshima and Shimane Prefectures in the western part of Honshu.
    Matched MeSH terms: Zoonoses/diagnosis; Zoonoses/parasitology*; Zoonoses/transmission
  16. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H
    Pathogens, 2020 Jun 25;9(6).
    PMID: 32630410 DOI: 10.3390/pathogens9060512
    The transmission of zoonotic filarial parasites by black flies has so far been reported in the Chiang Mai and Tak provinces, Thailand, and the bites of these infected black flies can cause a rare disease-human zoonotic onchocerciasis. However, species identification of the filarial parasites and their black fly vectors in the Chiang Mai province were previously only based on a morphotaxonomic analysis. In this study, a combined approach of morphotaxonomic and molecular analyses (mitochondrial cox1, 12S rRNA, and nuclear 18S rRNA (SSU HVR-I) genes) was used to clarify the natural filarial infections in female black flies collected by using human and swine baits from two study areas (Ban Lek and Ban Pang Dang) in the Chiang Mai province from March 2018 to January 2019. A total of 805 and 4597 adult females, belonging to seven and nine black fly taxa, were collected from Ban Lek and Ban Pang Dang, respectively. At Ban Lek, four of the 309 adult females of Simulium nigrogilvum were positive for Onchocerca species type I in the hot and rainy seasons. At Ban Pang Dang, five unknown filarial larvae (belonging to the same new species) were detected in Simulium sp. in the S. varicorne species-group and in three species in the S. asakoae species-group in all seasons, and three non-filarial larvae of three different taxa were also found in three females of the S. asakoae species-group. This study is the first to molecularly identify new filarial species and their vector black fly species in Thailand.
    Matched MeSH terms: Zoonoses
  17. Uni S, Fukuda M, Uga S, Agatsuma T, Nakatani J, Suzuki K, et al.
    Parasitol Int, 2021 Aug;83:102313.
    PMID: 33662527 DOI: 10.1016/j.parint.2021.102313
    Reports of zoonotic infections with Onchocerca japonica (Nematoda: Filarioidea), which parasitizes the Japanese wild boar, Sus scrofa leucomystax, have recently increased in Japan. To predict the occurrence of infection in humans, it is necessary to determine the prevalence of O. japonica infection in the natural host animals. We investigated the presence of adult worms in the footpads, and of microfilariae in skin snips, taken from the host animals, between 2000 and 2018. Onchocerca japonica was found in 165 of 223 (74%) Japanese wild boars in Honshu and Kyushu. Among the nine regions studied, the highest prevalence of O. japonica infection was found in Oita, Kyushu, where 47 of 52 (90.4%) animals were infected. The ears were the predilection sites for O. japonica microfilariae. Adult worms of O. japonica were found more frequently in the hindlimbs than in the forelimbs of the host animals. Onchocerca takaokai was found in 14 of 52 (26.9%) Japanese wild boars in Oita. In Kakeroma Island among the Nansei Islands, both O. japonica and O. takaokai were isolated from the Ryukyu wild boar, S. s. riukiuanus. These observations could help predict future occurrences of human zoonotic onchocercosis in Japan.
    Matched MeSH terms: Zoonoses/epidemiology*; Zoonoses/parasitology
  18. Uni S, Fukuda M, Ogawa K, Lim YA, Agatsuma T, Bunchom N, et al.
    Parasitol Int, 2017 Oct;66(5):593-595.
    PMID: 28648713 DOI: 10.1016/j.parint.2017.06.006
    An 11-year-old boy living in Otsu City, Shiga Prefecture, Kansai Region, Western Honshu, Japan had zoonotic onchocercosis. The patient developed a painful swelling on the little finger of his left hand. The worm detected in the excised mass had external transverse ridges but did not have inner striae in the cuticle. On the basis of the parasite's histopathological characteristics, the causative agent was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species of the filarial parasite was confirmed by sequencing the cox1 gene of the parasite. The Japanese wild boar Sus scrofa leucomystax is a definitive host for O. dewittei japonica, which is then transmitted by blackflies as the vector to humans. The current case described occurred in the Kansai Region, Western Honshu, where such infections were previously not reported.
    Matched MeSH terms: Zoonoses
  19. Fukuda M, Uni S, Igari T, Utsumi Y, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2019 Oct;72:101943.
    PMID: 31220633 DOI: 10.1016/j.parint.2019.101943
    A 73-year-old man living in Kawamata-machi, Fukushima Prefecture, Northeastern Honshu, Japan, visited a hospital with complaints of a subcutaneous swelling that had developed on the back of his left hand. The nodule was surgically removed from the vagina fibrosa tendinis of his left forefinger. Based on the histopathological characteristics, the causative agent of this nodule was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species identification was confirmed by cox1 gene sequencing of the worm tissues from paraffin-embedded sections of the nodule. Although 11 cases of zoonotic onchocercosis have previously been recorded in Kyushu and Western Honshu, Japan, the present findings represent the first human case of infection with O. dewittei japonica in Northeastern Honshu, Japan.
    Matched MeSH terms: Zoonoses/parasitology; Zoonoses/transmission*
  20. Sadiq MB, Hamid NA, Yusri UK, Ramanoon SZ, Mansor R, Affandi SA, et al.
    Prev Vet Med, 2021 Nov;196:105489.
    PMID: 34536805 DOI: 10.1016/j.prevetmed.2021.105489
    This study aimed to assess knowledge, attitude and practices about zoonotic diseases and associated factors among ruminant farmers in Selangor, Malaysia. A cross-sectional survey was conducted between January 2018 and December 2020. The survey was developed in English and Malay, validated, administered to ruminant farmers in Selangor. A total of 84 farmers completed the structured questionnaire. The data were analysed using descriptive statistics, principal component factor analysis and binary logistic regression models. Only 42 % (35/84) had heard of the term "zoonotic diseases" before this study but the majority of farmers (52/84; 61.9 %) were aware that certain diseases could be transmitted between humans and animals. A higher proportion was aware of rabies (20.8 %), followed by tuberculosis (17.8 %) and brucellosis (15.7 %), and most respondents identified the diseases as zoonotic. The majority of farmers stated (60 %) that zoonosis could be prevented and they preferred to learn more about such diseases through veterinary personnel. Higher proportions (>80 %) agreed to practices such as hand washing, proper cooking of meat, and keeping animal health records. However, the need to pasteurise milk before drinking and selling were the least items that farmers agreed to, which was reflected in their practices. Sixty-four per cent of the farmers had stray animals on their farm with dogs (45.5 %) being predominant. Overall, 34.5 % (29/84), 51.1 % (43/84), and 60.7 % (51/84) were considered to have satisfactory knowledge, attitude and practices regarding zoonotic diseases, respectively. Farmers with higher education (odds ratio; OR = 16.6; 95 % CI 3.7-71.4) and rearing exotic breeds of animals (OR = 6.0; 95 % CI 1.3-27.7) were more likely to have satisfactory knowledge about zoonoses, but less likely for those with small herd size (51-100 animals) (OR = 0.19; 95 % CI 0.04-0.95). The odds of having satisfactory attitude towards preventive measures against zoonoses were higher in farmers with higher education (OR = 3.2; 95 % CI 1.1-8.9). Farms with herd health programs were more likely to engage in satisfactory practices towards zoonoses (OR = 3.2; 95 % CI 1.2-10.0) relative to farms lacking programs. These areas might need to be considered by public health authorities to improve the current knowledge and attitude of ruminant farmers about zoonotic diseases in the Malaysian context.
    Matched MeSH terms: Zoonoses/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links