METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures.
RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions.
CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose.
KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.
METHODS: Cross sectional observational cohort study. Subjects with normal eyes were recruited. Two sets of optical coherence tomography angiography images of macula and optic nerve head were acquired during one visit. Novel in-house developed software was used to count the pixels in each images and to compute the microvessel density of the macula and optic disc. Data were analysed to determine the measurement repeatability.
RESULTS: A total of 176 eyes from 88 consecutive normal subjects were recruited. For macular images, the mean vessel density at superficial retina, deep retina, outer retina and choriocapillaries segment was OD 0.113 and OS 0.111, OD 0.239 and OS 0.230, OD 0.179 and OS 0.164, OD 0.237 and OS 0.215 respectively. For optic disc images, mean vessel density at vitreoretinal interface, radial peripapillary capillary, superficial nerve head and disc segment at the level of choroid were OD 0.084 and OS 0.085, OD 0.140 and OS 0.138, OD 0.216 and OS 0.209, OD 0.227 and OS 0.236 respectively. The measurement repeatability tests showed that the coefficient of variation of macular scans, for right and left eyes, ranged from 6.4 to 31.1% and 5.3 to 59.4%. Likewise, the coefficient of variation of optic disc scans, for right and left eyes, ranged from 14.3 to 77.4% and 13.5 to 75.3%.
CONCLUSIONS: Optical coherence tomography angiography is a useful modality to visualise the microvasculature plexus of macula and optic nerve head. The vessel density measurement of macular scan by mean of optical coherence tomography angiography demonstrated good repeatability. The optic disc scan, on the other hand, showed a higher coefficient of variation indicating a lower measurement repeatability than macular scan. Interpretation of optical coherence tomography angiography should take into account test-retest repeatability of the imaging system.
TRIAL REGISTRATION: National Healthcare Group Domain Specific Review Board ( NHG DSRB ) Singapore. DSRB Reference: 2015/00301.
Methods: By means of propensity score (PS) matching 234 individuals with de novo CAD were identified with similar demographic characteristics. This patient population was stratified in a 1:1 fashion according to a reference vessel diameter cut-off of 2.75 mm in small and large vessel disease. The primary endpoint was the rate of clinically driven target lesion revascularization (TLR) at 9 months.
Results: Patients with small vessel disease had an average reference diameter of 2.45 ± 0.23 mm, while the large vessel group averaged 3.16 ± 0.27 mm. Regarding 9-month major adverse cardiac event (MACE), 5.7% of the patients with small and 6.1% of the patients with large vessels had MACE (p=0.903). Analysis of the individual MACE components revealed a TLR rate of 3.8% in small and 1.0% in large vessels (p=0.200). Of note, no thrombotic events in the DCB treated coronary segments occurred in either group during the 9-month follow-up.
Conclusions: Our data demonstrate for the first time that DCB-only PCI of de novo lesions in large coronary arteries (>2.75 mm) is safe and as effective. Interventional treatment for CAD without permanent or temporary scaffolding, demonstrated a similar efficacy for large and small vessels.
OBJECTIVES: The aim of this study is to investigate the sensitivity and specificity of PMCTA in diagnosing coronary artery stenosis using water-based contrast media introduced though the vessels of the neck, compared to the gold standard of diagnosis i.e. gross and histological evaluation of the coronary artery.
METHOD: This was a cross sectional study of 158 arterial sections involving 37 subjects recruited from the National Institute of Forensic Medicine (IPFN), Hospital Kuala Lumpur (HKL). An unenhanced PMCT was performed followed by PMCTA using water-based contrast media introduced though the vessels of the neck. Coronary artery stenosis was determined using multiplanar reconstructionD while the degree of stenosis was determined by calculating the percentage of luminal diameter divided by the diameter of the vessel internal elastic.
RESULTS: The analysis of PMCTA and histopathology examinations revealed a sensitivity of 61.5%, specificity of 91.7%; positive predictive value (PPV) of 40.0% and negative predictive value (NPV) of 96.4%.
CONCLUSION: PMCTA utilizing water-based contrast introduced though the vessels of the neck yielded similar results as other methods and techniques of PMCTA. We would therefore conclude that PMCTA utilizing this technique could be used to assess the degree of calcification and the presence of significant stenosis.
METHODS: Images of 31 adult patients who underwent CTPA examinations in our institution from March to April 2019 were retrospectively collected. Other data, such as scanning parameters, radiation dose and body habitus information from the subjects were also recorded. Six different levels of IR were applied to the volume data of the subjects. Five circles of the region of interest (ROI) were drawn in five different arteries namely, pulmonary trunk, right pulmonary artery, left pulmonary artery, ascending aorta and descending aorta. The mean Signal-to-noise ratio (SNR) was obtained, and the FOM was calculated in a fraction of the SNR2 divided by volume-weighted CT dose index (CTDIvol) and SNR2 divided by the size-specific dose estimates (SSDE).
RESULTS: Overall, we observed that the mean value of CTDIvol and SSDE were 13.79±7.72 mGy and 17.25±8.92 mGy, respectively. Notably, SNR values significantly increase with increase of the IR level (p
CASE PRESENTATION: In a 65-year old male undergoing the bicuspid aortic valve (BAV) repair and the extensive remodeling of dilated sinus and tubular junction, and preoperative coronary angiography were unsuccessfully completed due to an allergic reaction to the contrast medium. Intraoperative TEE by employing various 3-dimensional volume images of coronary ostia and Doppler tracings of the coronary arterial flows enabled a thorough pre-procedural evaluation of the high take-off coronary arteries and post-procedural evaluation by confirming the absence of any compromise in coronary arterial flow.
CONCLUSION: In the present case, intraoperative application of various TEE imaging modalities enabled comprehensive evaluation of high-taking off coronary artery, as an alternative to preoperative coronary angiography, in a patient undergoing an extensive aortic valve and aortic root repair procedure.