Displaying publications 21 - 40 of 132 in total

Abstract:
Sort:
  1. Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, et al.
    Front Cell Infect Microbiol, 2023;13:1061937.
    PMID: 36864886 DOI: 10.3389/fcimb.2023.1061937
    An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  2. Azzeri A, Dahlui M, Mohamed R, McDonald SA, Jaafar H, Shabaruddin FH
    Front Public Health, 2023;11:1114560.
    PMID: 36935675 DOI: 10.3389/fpubh.2023.1114560
    INTRODUCTION: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to sofosbuvir/daclatasvir (SOF/DAC) is available through compulsory licensing, with access to sofosbuvir/velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes but has higher drug acquisition costs compared to SOF/DAC. A stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL.

    METHODS: This study aimed to conduct a 5-year budget impact analysis of the proposed stratified treatment cascade for HCV treatment in Malaysia. A disease progression model that was developed based on model-predicted HCV epidemiology data was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. Healthcare costs associated with DAA therapy and disease stage monitoring were included to estimate the downstream cost implications.

    RESULTS: The stratified treatment cascade with 109 in Scenario B was found to be cost-saving compared to Scenario A. The cumulative savings for the stratified treatment cascade was USD 1.4 million over 5 years.

    DISCUSSION: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can result in a budget impact reduction in overall healthcare expenditure in Malaysia.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  3. Kanauchi O, Low ZX, Jounai K, Tsuji R, AbuBakar S
    Front Immunol, 2023;14:1280680.
    PMID: 38116008 DOI: 10.3389/fimmu.2023.1280680
    The COVID-19 outbreak has caused significant global changes and increased public awareness of SARS-CoV-2. Substantial progress in developing vaccines, enhancing sanitation practices, and implementing various measures to combat the virus, including the utilization of probiotics has been made. This comprehensive review examined the medical impact of clinically proven probiotics on infectious diseases, considering three crucial time periods: before (pre-), during (mid-), and after (post-) COVID-19 pandemic era. This review also showed a perspective on the use of probiotics to stimulate the innate immune system and prevent infectious diseases. In pre-COVID-19 era, several probiotic strains were found to be clinically effective in addressing gastrointestinal infectious diseases, the common cold and flu. However, the mechanism by which probiotics exerted their antiviral effects remained relatively unclear during that period. Nevertheless, probiotics, Lactococcus lactis strain Plasma (LC-Plasma), and others have gained attention for their unique ability to modulate the immune system and demonstrate antiviral properties. While some probiotics have shown promise in alleviating gastrointestinal symptoms linked to COVID-19, their direct effectiveness in treating or preventing COVID-19 progression has not yet been conclusively established. As we transition into the post-COVID-19 era, the relationship between COVID-19 and plasmacytoid dendritic cells (pDCs), a vital component of the innate immune system, has been gradually elucidated. These findings are now being applied in developing novel vaccines and treatments involving interferons and in immune activation research using probiotics as adjuvants, comparable to CpG-DNA through TLR9. The role of the local innate immune system, including pDCs, as the first line of defense against viral infections has gained increasing interest. Moving forward, insight of the immune system and the crosstalk between probiotics and the innate immune system is expected to highlight the role of probiotics in adjunctive immunoregulatory therapy. In combination with drug treatments, probiotics may play a more substantial role in enhancing immune responses. The immunoregulatory approach using probiotics such as LC-Plasma, which can induce anti-infectious factors such as interferons, holds promise as a viable therapeutic and prophylactic option against viral infectious diseases due to their good safety profile and protective efficacy.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  4. Tan MP, Sekawi Z, Abdul Manap R, Razali RM, Mahadzir H, Nordin N, et al.
    BMC Infect Dis, 2022 Dec 15;22(1):943.
    PMID: 36522615 DOI: 10.1186/s12879-022-07920-3
    BACKGROUND: Older persons are at high-risk of developing severe complications from influenza. This consensus statement was developed to provide guidance on appropriate influenza prevention strategies relevant to the Malaysian healthcare setting.

    METHODS: Under the initiative of the Malaysian Influenza Working Group (MIWG), a panel comprising 11 multi-speciality physicians was convened to develop a consensus statement. Using a modified Delphi process, the panellists reviewed published evidence on various influenza management interventions and synthesised 10 recommendations for the prevention of influenza among the aged population via group discussions and a blinded rating exercise.

    RESULTS: Overall, annual influenza vaccination is recommended for individuals aged ≥ 60 years, particularly those with specific medical conditions or residing in aged care facilities (ACFs). There is no preference for a particular vaccine type in this target population. Antiviral agents can be given for post-exposure chemoprophylaxis or when vaccine contraindication exists. Infection control measures should serve as adjuncts to prevent the spread of influenza, especially during Hajj.

    CONCLUSION: This consensus statement presents 10 evidence-based recommendations that can be adopted by healthcare providers to prevent influenza among the aged population in Malaysia. It could also serve as a basis for health policy planning in other lower- and middle-income countries.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  5. Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL
    Pharmacol Rep, 2022 Dec;74(6):1166-1181.
    PMID: 36401119 DOI: 10.1007/s43440-022-00432-6
    The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  6. Younossi ZM, Yu ML, El-Kassas M, Esmat G, Castellanos Fernández MI, Buti M, et al.
    J Viral Hepat, 2022 Nov;29(11):1015-1025.
    PMID: 36036096 DOI: 10.1111/jvh.13741
    Cure of chronic hepatitis C (CHC) can lead to improvement of health-related quality of life and other patient-reported outcomes (PROs). While extensive PRO data for CHC patients who were enrolled in clinical trials are available, similar data for patients seen in real-world practices are scarce. Our aim was to assess PROs of CHC patients enrolled from real-world practices from different regions and to compare them with those enrolled in clinical trials. CHC patients seen in clinical practices and not receiving treatment were enrolled in the Global Liver Registry (GLR). Clinical and PRO (FACIT-F, CLDQ-HCV, WPAI) data were collected and compared with the baseline data from CHC patients enrolled in clinical trials. N = 12,171 CHC patients were included (GLR n = 3146, clinical trial subjects n = 9025). Patients were from 30 countries from 6 out of 7 Global Burden of Disease (GBD) super-regions. Compared with clinical trial enrollees, patients from GLR were less commonly enrolled from High-Income GBD super-region, older, more commonly female, less employed, had more type 2 diabetes, anxiety and clinically overt fatigue but less cirrhosis (all p  0.05). In conclusion, hepatitis C patients seen in the real-world practices have PRO impairment driven by fatigue and psychiatric comorbidities.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  7. Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW
    Carbohydr Polym, 2022 Aug 15;290:119500.
    PMID: 35550778 DOI: 10.1016/j.carbpol.2022.119500
    The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  8. Kow CS, Ramachandram DS, Hasan SS
    Int Immunopharmacol, 2022 Feb;103:108455.
    PMID: 34959188 DOI: 10.1016/j.intimp.2021.108455
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  9. Kow CS, Ramachandram DS, Hasan SS
    Immunopharmacol Immunotoxicol, 2022 Feb;44(1):28-34.
    PMID: 34762561 DOI: 10.1080/08923973.2021.1993894
    AIM: Several randomized trials have evaluated the effect of neutralizing monoclonal antibodies on the risk of hospital admission and risk of mortality in patients with COVID-19. We aimed to summarize the overall evidence in the form of a systematic review and meta-analysis.

    METHODS: A systematic literature search with no language restriction was performed in electronic databases and preprint repositories to identify eligible studies published up to 29 June 2021. The outcomes of interest were hospital admission and all-cause mortality. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of neutralizing monoclonal antibodies relative to nonuse of neutralizing monoclonal antibodies, at 95% confidence intervals (CI).

    RESULTS: Our systematic literature search identified nine randomized controlled trials. Three trials had an overall low risk of bias, while four trials had some concerns in the overall risk of bias. The meta-analysis revealed no statistically significant difference in the odds of mortality (pooled OR = 0.69; 95% CI 0.33-1.47), but a statistically significant reduction in the odds of hospital admission (pooled OR = 0.29; 95% CI 0.21-0.42), with the administration of a neutralizing monoclonal antibody among patients with COVID-19, relative to non-administration of a neutralizing monoclonal antibody, at the current sample size.

    CONCLUSION: The reduced risk of hospital admission with neutralizing monoclonal antibodies use suggests that the timing of neutralizing antibodies administration is key in preventing hospital admission and, ultimately, death. Future randomized trials should aim to determine if the clinical outcomes with neutralizing monoclonal antibodies differ based on serostatus.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  10. Low ZY, Yip AJW, Lal SK
    Biochim Biophys Acta Mol Basis Dis, 2022 Feb 01;1868(2):166294.
    PMID: 34687900 DOI: 10.1016/j.bbadis.2021.166294
    Ivermectin (IVM) is an FDA approved macrocyclic lactone compound traditionally used to treat parasitic infestations and has shown to have antiviral potential from previous in-vitro studies. Currently, IVM is commercially available as a veterinary drug but have also been applied in humans to treat onchocerciasis (river blindness - a parasitic worm infection) and strongyloidiasis (a roundworm/nematode infection). In light of the recent pandemic, the repurposing of IVM to combat SARS-CoV-2 has acquired significant attention. Recently, IVM has been proven effective in numerous in-silico and molecular biology experiments against the infection in mammalian cells and human cohort studies. One promising study had reported a marked reduction of 93% of released virion and 99.98% unreleased virion levels upon administration of IVM to Vero-hSLAM cells. IVM's mode of action centres around the inhibition of the cytoplasmic-nuclear shuttling of viral proteins by disrupting the Importin heterodimer complex (IMPα/β1) and downregulating STAT3, thereby effectively reducing the cytokine storm. Furthermore, the ability of IVM to block the active sites of viral 3CLpro and S protein, disrupts important machinery such as viral replication and attachment. This review compiles all the molecular evidence to date, in review of the antiviral characteristics exhibited by IVM. Thereafter, we discuss IVM's mechanism and highlight the clinical advantages that could potentially contribute towards disabling the viral replication of SARS-CoV-2. In summary, the collective review of recent efforts suggests that IVM has a prophylactic effect and would be a strong candidate for clinical trials to treat SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  11. Jo HS, Khan JF, Han JH, Yu YD, Kim DS
    Transplant Proc, 2021 Dec;53(10):3016-3021.
    PMID: 34740450 DOI: 10.1016/j.transproceed.2021.09.038
    BACKGROUND: Hepatitis B immunoglobulin (HBIG) and oral nucleoside/nucleotide analogs have been the mainstay of hepatitis B virus (HBV) prophylaxis after liver transplantation. However, long-term HBIG administration could have disadvantages, such as an increase in medical costs and the development of mutant HBV strains. This study aimed to investigate the safety and efficacy of HBV vaccination after the withdrawal of HBIG after liver transplantation.

    METHODS: This prospective open-label single-arm observational clinical trial enrolled 41 patients who underwent liver transplantation between 2010 and 2016 because of a condition related to chronic HBV infection. At the time of enrollment, all patients had taken entecavir and discontinued HBIG administration. When hepatitis B surface antibody titer was undetectable after the withdrawal of HBIG, a recombinant HBV vaccine was injected intramuscularly at month 0, 1, and 6.

    RESULTS: After excluding 5 patients who dropped out and 2 patients who had a persistent hepatitis B surface antibody titer, 9 (26.5%) of 34 patients had a positive vaccination response. The median hepatitis B surface antibody titer at seroconversion was 86 (12-1000) IU/L, and those at the end of follow-up were 216 (30-1000) IU/L. No patients experienced HBV recurrence during the study period. Sex (female, odds ratio 32.91 [1.83-592.54], P = .018) and the dosing interval of HBIG before withdrawal (≥90 days, 16.21 [1.21-217.31], P = .035) were independent contributing factors for positive response to the vaccination.

    CONCLUSION: HBV vaccination still deserves consideration as active immunoprophylaxis after liver transplantation because it could provide added immunity to nucleoside/nucleotide analogs monotherapy with excellent cost-effectiveness.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  12. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, et al.
    Int J Mol Sci, 2021 Nov 23;22(23).
    PMID: 34884440 DOI: 10.3390/ijms222312638
    Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  13. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 Nov;16(16):1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  14. Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN
    Infect Genet Evol, 2021 Sep;93:104944.
    PMID: 34052418 DOI: 10.1016/j.meegid.2021.104944
    Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  15. Kow CS, Hasan SS
    Eur J Clin Pharmacol, 2021 Aug;77(8):1089-1094.
    PMID: 33532896 DOI: 10.1007/s00228-021-03087-z
    OBJECTIVE: We aimed to perform a meta-analysis of randomized controlled trials (RCTs) to summarize the overall effect of tocilizumab on the risk of mortality among patients with coronavirus disease 2019 (COVID-19).

    METHODS: We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Google Scholar, and medRxiv (preprint repository) databases (up to 7 January 2021). Pooled effect sizes with 95% confidence interval (CI) were generated using random-effects and inverse variance heterogeneity models. The risk of bias of the included RCTs was appraised using version 2 of the Cochrane risk-of-bias tool for randomized trials.

    RESULTS: Six RCTs were included: two trials with an overall low risk of bias and four trials had some concerns regarding the overall risk of bias. Our meta-analysis did not find significant mortality benefits with the use of tocilizumab among patients with COVID-19 relative to non-use of tocilizumab (pooled hazard ratio = 0.83; 95% CI 0.66-1.05, n = 2,057). Interestingly, the estimated effect of tocilizumab on the composite endpoint of requirement for mechanical ventilation and/or all-cause mortality indicated clinical benefits, with some evidence against our model hypothesis of no significant effect at the current sample size (pooled hazard ratio = 0.62; 95% CI 0.42-0.91, n = 749).

    CONCLUSION: Despite no clear mortality benefits in hospitalized patients with COVID-19, tocilizumab appears to reduce the likelihood of progression to mechanical ventilation.

    Matched MeSH terms: Antiviral Agents/therapeutic use*
  16. Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S
    Molecules, 2021 Jun 30;26(13).
    PMID: 34209247 DOI: 10.3390/molecules26134014
    Influenza is one of the most serious respiratory viral infections worldwide. Although several studies have reported that green tea catechins (GTCs) might prevent influenza virus infection, this remains controversial. We performed a systematic review and meta-analysis of eight studies with 5,048 participants that examined the effect of GTC administration on influenza prevention. In a random-effects meta-analysis of five RCTs, 884 participants treated with GTCs showed statistically significant effects on the prevention of influenza infection compared to the control group (risk ratio (RR) 0.67, 95%CIs 0.51-0.89, P = 0.005) without evidence of heterogeneity (I2= 0%, P = 0.629). Similarly, in three cohort studies with 2,223 participants treated with GTCs, there were also statistically significant effects (RR 0.52, 95%CIs 0.35-0.77, P = 0.001) with very low evidence of heterogeneity (I2 = 3%, P = 0.358). Additionally, the overall effect in the subgroup analysis of gargling and orally ingested items (taking capsules and drinking) showed a pooled RR of 0.62 (95% CIs 0.49-0.77, P = 0.003) without heterogeneity (I2= 0%, P = 0.554). There were no obvious publication biases (Egger's test (P = 0.138) and Begg's test (P = 0.103)). Our analysis suggests that green tea consumption is effective in the prophylaxis of influenza infections. To confirm the findings before implementation, longitudinal clinical trials with specific doses of green tea consumption are warranted.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  17. Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202844 DOI: 10.3390/molecules26133868
    The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  18. Andrieux-Meyer I, Tan SS, Thanprasertsuk S, Salvadori N, Menétrey C, Simon F, et al.
    Lancet Gastroenterol Hepatol, 2021 Jun;6(6):448-458.
    PMID: 33865507 DOI: 10.1016/S2468-1253(21)00031-5
    BACKGROUND: In low-income and middle-income countries, affordable direct-acting antivirals are urgently needed to treat hepatitis C virus (HCV) infection. The combination of ravidasvir, a pangenotypic non-structural protein 5A (NS5A) inhibitor, and sofosbuvir has shown efficacy and safety in patients with chronic HCV genotype 4 infection. STORM-C-1 trial aimed to assess the efficacy and safety of ravidasvir plus sofosbuvir in a diverse population of adults chronically infected with HCV.

    METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.

    FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.

    INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.

    FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  19. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK
    Arch Pharm Res, 2021 May;44(5):439-474.
    PMID: 33893998 DOI: 10.1007/s12272-021-01328-4
    Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  20. Shafi G, Desai S, Srinivasan K, Ramesh A, Chaturvedi R, Uttarwar M
    Mol Genet Genomics, 2021 May;296(3):501-511.
    PMID: 33743061 DOI: 10.1007/s00438-021-01774-1
    Coronavirus disease 2019 (COVID-19), a recent viral pandemic that first began in December 2019, in Hunan wildlife market, Wuhan, China. The infection is caused by a coronavirus, SARS-CoV-2 and clinically characterized by common symptoms including fever, dry cough, loss of taste/smell, myalgia and pneumonia in severe cases. With overwhelming spikes in infection and death, its pathogenesis yet remains elusive. Since the infection spread rapidly, its healthcare demands are overwhelming with uncontrollable emergencies. Although laboratory testing and analysis are developing at an enormous pace, the high momentum of severe cases demand more rapid strategies for initial screening and patient stratification. Several molecular biomarkers like C-reactive protein, interleukin-6 (IL6), eosinophils and cytokines, and artificial intelligence (AI) based screening approaches have been developed by various studies to assist this vast medical demand. This review is an attempt to collate the outcomes of such studies, thus highlighting the utility of AI in rapid screening of molecular markers along with chest X-rays and other COVID-19 symptoms to enable faster diagnosis and patient stratification. By doing so, we also found that molecular markers such as C-reactive protein, IL-6 eosinophils, etc. showed significant differences between severe and non-severe cases of COVID-19 patients. CT findings in the lungs also showed different patterns like lung consolidation significantly higher in patients with poor recovery and lung lesions and fibrosis being higher in patients with good recovery. Thus, from these evidences we perceive that an initial rapid screening using integrated AI approach could be a way forward in efficient patient stratification.
    Matched MeSH terms: Antiviral Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links