Methodology: We conducted a cross-sectional study using 6-days CGMS to detect the prevalence of hypoglycaemia in 31 insulin-treated pregnant women with diabetes who achieved HbA1c <6.0%. Patients were required to log-keep their self-monitoring blood glucose (SMBG) readings and hypoglycaemia events.
Results: Eight women experienced confirmed hypoglycaemia with additional seven experienced relative hypoglycaemia, giving rise to prevalence rate of 45.2% (one had both confirmed and relative hypoglycaemia). Nine relative hypoglycaemia and 17 confirmed hypoglycaemic events were recorded. Sixteen (94%) out of 17 confirmed hypoglycaemia events recorded by CGMS were asymptomatic and were missed despite performing regular SMBG. Nocturnal hypoglycaemia events were recorded in seven women. Univariable analysis did not identify any association between conventional risk factors and hypoglycaemia events in our cohort.
Conclusion: Insulin-treated pregnant women with diabetes who achieved HbA1c <6.0% were associated with high prevalence of hypoglycaemia. Asymptomatic hypoglycaemia is common in our cohort and frequently missed despite regular SMBG. Present study did not identify any association between conventional risk factors and hypoglycaemia events in our cohort.
Methodology: 148 patients on hemodialysis were analysed, 91 patients had end-stage-diabetic-renal disease (DM-ESRD), and 57 patients had end-stage-non-diabetic renal disease (NDM-ESRD). Glycemic patterns and PHH data were obtained from 11-point and 7-point self-monitoring blood glucose (SMBG) profiles on hemodialysis and non-hemodialysis days. PHH and its associated factors were analysed with logistic regression.
Results: Mean blood glucose on hemodialysis days was 9.33 [SD 2.7] mmol/L in DM-ESRD patients compared to 6.07 [SD 0.85] mmol/L in those with NDM-ESRD (p<0.001). PHH occurred in 70% of patients and was more pronounced in DM-ESRD compared to NDM-ESRD patients (72.5% vs 27.5%; OR 4.5). Asymptomatic hypoglycemia was observed in 18% of patients. DM-ESRD, older age, previous IHD, obesity, high HbA1c, elevated highly-sensitive CRP and low albumin were associated with PHH.
Conclusion: DM-ESRD patients experienced significant PHH in our cohort. Other associated factors include older age, previous IHD, obesity, high HbA1c, elevated hs-CRP and low albumin.
OBJECTIVES: To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes.
SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors.
SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach.
MAIN RESULTS: This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small sample sizes, and few events. In addition, there was high heterogeneity for some outcomes.Various methods of glucose monitoring were compared in the trials. Neither pooled analyses nor individual trial analyses showed any clear advantages of one monitoring technique over another for primary and secondary outcomes. Many important outcomes were not reported.1. Self-monitoring versus standard care (two studies, 43 women): there was no clear difference for caesarean section (risk ratio (RR) 0.78, 95% confidence interval (CI) 0.40 to 1.49; one study, 28 women) or glycaemic control (both very low-quality), and not enough evidence to assess perinatal mortality and neonatal mortality and morbidity composite. Hypertensive disorders of pregnancy, large-for-gestational age, neurosensory disability, and preterm birth were not reported in either study.2. Self-monitoring versus hospitalisation (one study, 100 women): there was no clear difference for hypertensive disorders of pregnancy (pre-eclampsia and hypertension) (RR 4.26, 95% CI 0.52 to 35.16; very low-quality: RR 0.43, 95% CI 0.08 to 2.22; very low-quality). There was no clear difference in caesarean section or preterm birth less than 37 weeks' gestation (both very low quality), and the sample size was too small to assess perinatal mortality (very low-quality). Large-for-gestational age, mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.3. Pre-prandial versus post-prandial glucose monitoring (one study, 61 women): there was no clear difference between groups for caesarean section (RR 1.45, 95% CI 0.92 to 2.28; very low-quality), large-for-gestational age (RR 1.16, 95% CI 0.73 to 1.85; very low-quality) or glycaemic control (very low-quality). The results for hypertensive disorders of pregnancy: pre-eclampsia and perinatal mortality are not meaningful because these outcomes were too rare to show differences in a small sample (all very low-quality). The study did not report the outcomes mortality or morbidity composite, neurosensory disability or preterm birth.4. Automated telemedicine monitoring versus conventional system (three studies, 84 women): there was no clear difference for caesarean section (RR 0.96, 95% CI 0.62 to 1.48; one study, 32 women; very low-quality), and mortality or morbidity composite in the one study that reported these outcomes. There were no clear differences for glycaemic control (very low-quality). No studies reported hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), neurosensory disability or preterm birth.5.CGM versus intermittent monitoring (two studies, 225 women): there was no clear difference for pre-eclampsia (RR 1.37, 95% CI 0.52 to 3.59; low-quality), caesarean section (average RR 1.00, 95% CI 0.65 to 1.54; I² = 62%; very low-quality) and large-for-gestational age (average RR 0.89, 95% CI 0.41 to 1.92; I² = 82%; very low-quality). Glycaemic control indicated by mean maternal HbA1c was lower for women in the continuous monitoring group (mean difference (MD) -0.60 %, 95% CI -0.91 to -0.29; one study, 71 women; moderate-quality). There was not enough evidence to assess perinatal mortality and there were no clear differences for preterm birth less than 37 weeks' gestation (low-quality). Mortality or morbidity composite, neurosensory disability and preterm birth less than 34 weeks were not reported.6. Constant CGM versus intermittent CGM (one study, 25 women): there was no clear difference between groups for caesarean section (RR 0.77, 95% CI 0.33 to 1.79; very low-quality), glycaemic control (mean blood glucose in the 3rd trimester) (MD -0.14 mmol/L, 95% CI -2.00 to 1.72; very low-quality) or preterm birth less than 37 weeks' gestation (RR 1.08, 95% CI 0.08 to 15.46; very low-quality). Other primary (hypertensive disorders of pregnancy, large-for-gestational age, perinatal mortality (stillbirth and neonatal mortality), mortality or morbidity composite, and neurosensory disability) or GRADE outcomes (preterm birth less than 34 weeks' gestation) were not reported.
AUTHORS' CONCLUSIONS: This review found no evidence that any glucose monitoring technique is superior to any other technique among pregnant women with pre-existing type 1 or type 2 diabetes. The evidence base for the effectiveness of monitoring techniques is weak and additional evidence from large well-designed randomised trials is required to inform choices of glucose monitoring techniques.
METHODS: A retrospective observational study of 60 type 1 and 100 type 2 diabetes subjects. All underwent professional continuous glucose monitoring (CGM) for 3-6 days and recorded self-monitored blood glucose (SMBG). Indices were calculated from both CGM and SMBG. Statistical analyses included regression and area under receiver operator curve (AUC) analyses.
RESULTS: Hypoglycemia frequency (53.3% vs. 24%, P Blood Glucose Index (LBGI)CGM, Glycemic Risk Assessment Diabetes Equation (GRADE)HypoglycemiaCGM, and Hypoglycemia IndexCGM predicted hypoglycemia well. %CVCGM and %CVSMBG consistently remained a robust discriminator of hypoglycemia in type 1 diabetes (AUC 0.88). In type 2 diabetes, a combination of HbA1c and %CVSMBG or LBGISMBG could help discriminate hypoglycemia.
CONCLUSION: Assessment of glycemia should go beyond HbA1c and incorporate measures of GV and glycemic indices. %CVSMBG in type 1 diabetes and LBGISMBG or a combination of HbA1c and %CVSMBG in type 2 diabetes discriminated hypoglycemia well. In defining hypoglycemia risk using GV and glycemic indices, diabetes subtypes and data source (CGM vs. SMBG) must be considered.
METHODS: This open-label, parallel-group, 26-week, multicentre, treat-to-target trial, randomly allocated participants (1:1) to two titration arms. The Simple algorithm titrated IDegAsp twice weekly based on a single pre-breakfast self-monitored plasma glucose (SMPG) measurement. The Stepwise algorithm titrated IDegAsp once weekly based on the lowest of three consecutive pre-breakfast SMPG measurements. In both groups, IDegAsp once daily was titrated to pre-breakfast plasma glucose values of 4.0-5.0 mmol/l. Primary endpoint was change from baseline in HbA1c (%) after 26 weeks.
RESULTS: Change in HbA1c at Week 26 was IDegAspSimple -14.6 mmol/mol (-1.3%) (to 52.4 mmol/mol; 6.9%) and IDegAspStepwise -11.9 mmol/mol (-1.1%) (to 54.7 mmol/mol; 7.2%). The estimated between-group treatment difference was -1.97 mmol/mol [95% confidence interval (CI) -4.1, 0.2] (-0.2%, 95% CI -0.4, 0.02), confirming the non-inferiority of IDegAspSimple to IDegAspStepwise (non-inferiority limit of ≤ 0.4%). Mean reduction in fasting plasma glucose and 8-point SMPG profiles were similar between groups. Rates of confirmed hypoglycaemia were lower for IDegAspStepwise [2.1 per patient years of exposure (PYE)] vs. IDegAspSimple (3.3 PYE) (estimated rate ratio IDegAspSimple /IDegAspStepwise 1.8; 95% CI 1.1, 2.9). Nocturnal hypoglycaemia rates were similar between groups. No severe hypoglycaemic events were reported.
CONCLUSIONS: In participants with insulin-naïve Type 2 diabetes mellitus, the IDegAspSimple titration algorithm improved HbA1c levels as effectively as a Stepwise titration algorithm. Hypoglycaemia rates were lower in the Stepwise arm.