Displaying publications 21 - 40 of 71 in total

Abstract:
Sort:
  1. Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB, Rchiad Z, et al.
    Proc Natl Acad Sci U S A, 2016 Jun 28;113(26):7231-6.
    PMID: 27303038 DOI: 10.1073/pnas.1522469113
    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
    Matched MeSH terms: Carrier Proteins/genetics*
  2. Khalilpour A, Osman S, Yunus MH, Santhanam A, Vellasamy N, Noordin R
    BMC Res Notes, 2014;7:809.
    PMID: 25406411 DOI: 10.1186/1756-0500-7-809
    Helicobacter pylori is a human pathogen and during the process of infection, antigens from the bacterium elicit strong host humoral immune responses. In our previous report, native H. pylori UreG protein showed good reactivity with sera from H. pylori patients. This study was aimed at producing the recombinant form of the protein (rUreG) and determining its seroreactivities.
    Matched MeSH terms: Carrier Proteins/biosynthesis; Carrier Proteins/genetics*; Carrier Proteins/immunology*; Carrier Proteins/isolation & purification
  3. Lee CY
    J Anim Physiol Anim Nutr (Berl), 2015 Apr;99(2):317-25.
    PMID: 25196093 DOI: 10.1111/jpn.12247
    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α.
    Matched MeSH terms: Carrier Proteins/genetics; Carrier Proteins/metabolism*
  4. Rapeah S, Norazmi MN
    Vaccine, 2006 Apr 24;24(17):3646-53.
    PMID: 16494975 DOI: 10.1016/j.vaccine.2006.01.053
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing the malarial epitopes F2R(II)EBA and (NANP)3 as well as two T cell epitopes of the M. tuberculosis ESAT-6 antigen, generated in favour of mycobacterium codon usage elicited specific immune response against these epitopes. Immunised Balb/c mice demonstrated an increase in almost all of the IgG subclasses against both malarial epitopes and enhanced splenocyte proliferative response against the malarial epitopes as well as selected peptides of ESAT-6. Furthermore, flow cytometric analyses showed elevated numbers of CD4+ lymphocytes expressing IFN-gamma and IL-2 against the ESAT-6 peptides, suggesting a specific Th1-mediated response. This study demonstrated that expressing malarial and TB epitopes in a single rBCG construct induced appropriate humoral and cellular immune response against immunogenic epitopes from both organisms.
    Matched MeSH terms: Carrier Proteins/genetics; Carrier Proteins/immunology*
  5. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Carrier Proteins/genetics; Carrier Proteins/metabolism*
  6. Thio CL, Yusof R, Ashrafzadeh A, Bahari S, Abdul-Rahman PS, Karsani SA
    PLoS One, 2015;10(6):e0129033.
    PMID: 26083627 DOI: 10.1371/journal.pone.0129033
    The Chikungunya virus (CHIKV) is an arthropod borne virus. In the last 50 years, it has been the cause of numerous outbreaks in tropical and temperate regions, worldwide. There is limited understanding regarding the underlying molecular mechanisms involved in CHIKV replication and how the virus interacts with its host. In the present study, comparative proteomics was used to identify secreted host proteins that changed in abundance in response to early CHIKV infection. Two-dimensional gel electrophoresis was used to analyse and compare the secretome profiles of WRL-68 cells infected with CHIKV against mock control WRL-68 cells. The analysis identified 25 regulated proteins in CHIKV infected cells. STRING network analysis was then used to predict biological processes that may be affected by these proteins. The processes predicted to be affected include signal transduction, cellular component and extracellular matrix (ECM) organization, regulation of cytokine stimulus and immune response. These results provide an initial view of CHIKV may affect the secretome of infected cells during early infection. The results presented here will compliment earlier results from the study of late host response. However, functional characterization will be necessary to further enhance our understanding of the roles played by these proteins in the early stages of CHIKV infection in humans.
    Matched MeSH terms: Carrier Proteins/genetics; Carrier Proteins/secretion
  7. Mahita J, Harini K, Rao Pichika M, Sowdhamini R
    J Biomol Struct Dyn, 2016 Jun;34(6):1345-62.
    PMID: 26264972 DOI: 10.1080/07391102.2015.1079243
    Precise functioning and fine-tuning of Toll-like receptor 4 (TLR4) signaling is a critical requirement for the smooth functioning of the innate immune system, since aberrant TLR4 activation causes excessive production of pro-inflammatory cytokines and interferons. This can result in life threatening conditions such as septic shock and other inflammatory disorders. The TRIF-related adaptor molecule (TRAM) adaptor protein is unique to the TLR4 signaling pathway and abrogation of TRAM-mediated TLR4 signaling is a promising strategy for developing therapeutics aimed at disrupting TRAM interactions with other components of the TLR4 signaling complex. The VIPER motif from the vaccinia virus-producing protein, A46 has been reported to disrupt TRAM-TLR4 interactions. We have exploited this information, in combination with homology modeling and docking approaches, to identify a potential binding site on TRAM lined by the BB loop and αC helix. Virtual screening of commercially available small molecules targeting the binding site enabled to short-list 12 small molecules to abrogate TRAM-mediated TLR4 signaling. Molecular dynamics and molecular mechanics calculations have been performed for the analysis of these receptor-ligand interactions.
    Matched MeSH terms: Carrier Proteins/metabolism; Carrier Proteins/chemistry
  8. Chornokur G, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Amankwah EK, et al.
    PLoS One, 2015;10(6):e0128106.
    PMID: 26091520 DOI: 10.1371/journal.pone.0128106
    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.

    METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.

    RESULTS: The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).

    CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.

    Matched MeSH terms: Carrier Proteins/genetics*; Carrier Proteins/metabolism
  9. Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, et al.
    Nat Genet, 2016 Apr;48(4):374-86.
    PMID: 26928228 DOI: 10.1038/ng.3521
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
    Matched MeSH terms: Carrier Proteins/genetics*; Carrier Proteins/metabolism
  10. Kandandapani S, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2020 Sep;38(14):4134-4142.
    PMID: 31552810 DOI: 10.1080/07391102.2019.1673210
    Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, Ksv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9-HSA complex. The binding constant of Tyr 9-HSA interaction was found to lie within the range 3.48-1.69 × 105 M-1 at three different temperatures, i.e. 15 °C, 25 °C and 35 °C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug-HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein's thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow's Site I of HSA as the preferred Tyr 9 binding site. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Carrier Proteins
  11. Tiruvayipati S, Bhassu S
    Gut Pathog, 2016;8:15.
    PMID: 27114742 DOI: 10.1186/s13099-016-0097-1
    Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
    Matched MeSH terms: Carrier Proteins
  12. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2021 Feb;39(2):691-702.
    PMID: 31913089 DOI: 10.1080/07391102.2020.1713215
    Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, K
    sv
    with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Carrier Proteins
  13. Rosmilah Misnan, Shahnaz Murad, Masita Arip, Noormalin Abdullah, Jamaludin Mohamed
    MyJurnal
    The objective of this study was to determine the Immunoglobulin E-binding proteins (IgE) and major allergens of Scomberomorus commerson Lacepede (Narrow-barred Spanish mackerel). Allergen extracts were obtained from uncooked and cooked fish by homogenization in phosphate-buffered saline followed by continuous extraction at 4oC or on ice. Protein profiles and IgEbinding patterns were then detected by means of sodium dodecyl polyacrylamide gel electrophoresis (SDS PAGE) and immunoblotting using sera from patients sensitized to the fish. SDS-PAGE of the uncooked fish extracts revealed 26 protein bands in the range of about 11 to >175 kD, while the cooked extracts produced fewer protein bands. Immunoblotting demonstrated 17 IgE-binding bands, ranging in molecular weight from 11 to 151 kD. Two components with molecular weight of about ~50 and 42 kD showed the highest frequency of IgE-binding (62.2 and 51.4% respectively) and were identified as the major allergens of this fish allergy. Other IgE-binding proteins including a protein at ~12 kD which was equivalent in size to parvalbumin were identified as the minor allergens.
    Matched MeSH terms: Carrier Proteins
  14. Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H
    Front Immunol, 2019;10:3041.
    PMID: 32010132 DOI: 10.3389/fimmu.2019.03041
    Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
    Matched MeSH terms: Carrier Proteins
  15. Afinah, S., Yazid, A.M, Anis Shobirin, M.H, Shuhaimi, M.
    MyJurnal
    Phytates have been considered as a threat in human diet due to its antinutrients behaviour which
    known as strong chelators of divalent minerals such as Ca2+, Mg2+, Zn2+ and Fe2+. Phytic acid has a potential for binding positively charged proteins, amino acids, and/or multivalent cations or minerals in foods. The resulting complexes are insoluble, difficult for humans to hydrolyze during digestion, and thus, typically are nutritionally less available for absorption. The reduction of this phytates can be achieved through both enzymatic and nonenzymatic removal. Enzymatic degradation includes addition of either isolated form of wild-type or recombinant exogenous phytate-degrading enzymes microorganisms in the food matrix. Non-enzymatic hydrolysis of phytate occurred in the final food during food processing or physical separation of phytate-rich parts of the plants seed. The application of phytase with respect to breadmaking process, probiotics, animal feed supplement and transgenic crops are emphasised in this paper.
    Matched MeSH terms: Carrier Proteins
  16. Lai PS, Usama SM, Kiew LV, Lee HB, Chung LY, Burgess K, et al.
    Cancer Immunol Immunother, 2022 Sep;71(9):2099-2108.
    PMID: 35032175 DOI: 10.1007/s00262-022-03147-y
    Conventional cancer therapies such as chemotherapy are non-selective and induce immune system anergy, which lead to serious side effects and tumor relapse. It is a challenge to prime the body's immune system in the cancer-bearing subject to produce cancer antigen-targeting antibodies, as most tumor-associated antigens are expressed abundantly in cancer cells and some of normal cells. This study illustrates how hapten-based pre-immunization (for anti-hapten antibodies production) combined with cancer receptor labeling with hapten antigen constructs can elicit antibody-dependent cellular phagocytosis (ADCP). Thus, the hapten antigen 2,4-dinitrophenol (DNP) was covalently combined with a cancer receptor-binding dipeptide (IYIY) to form a dipeptide-hapten construct (IYIY-DNP, MW = 1322.33) that targets the tropomyosin receptor kinase C (TrkC)-expressed on the surface of metastatic cancer cells. IYIY-DNP facilitated selective association of RAW264.7 macrophages to the TrkC expressing 4T1 cancer cells in vitro, forming cell aggregates in the presence of anti-DNP antibodies, suggesting initiation of anti-DNP antibody-dependent cancer cell recognition of macrophages by the IYIY-DNP. In in vivo, IYIY-DNP at 10 mg/kg suppressed growth of 4T1 tumors in DNP-immunized BALB/c mice by 45% (p 
    Matched MeSH terms: Carrier Proteins
  17. Tohyama J, Nakashima M, Nabatame S, Gaik-Siew C, Miyata R, Rener-Primec Z, et al.
    J Hum Genet, 2015 Apr;60(4):167-73.
    PMID: 25631096 DOI: 10.1038/jhg.2015.5
    Recent progress in genetic analysis reveals that a significant proportion of cryptogenic epileptic encephalopathies are single-gene disorders. Mutations in numerous genes for early-onset epileptic encephalopathies have been rapidly identified, including in SPTAN1, which encodes α-II spectrin. The aim of this review is to delineate SPTAN1 encephalopathy as a distinct clinical syndrome. To date, a total of seven epileptic patients with four different in-frame SPTAN1 mutations have been identified. The major clinical features of SPTAN1 mutations include epileptic encephalopathy with hypsarrhythmia, no visual attention, acquired microcephaly, spastic quadriplegia and severe intellectual disability. Brainstem and cerebellar atrophy and cerebral hypomyelination, as observed by magnetic resonance imaging, are specific hallmarks of this condition. A milder variant is characterized by generalized epilepsy with pontocerebellar atrophy. Only in-frame SPTAN1 mutations in the last two spectrin repeats in the C-terminal region lead to dominant negative effects and these specific phenotypes. The last two spectrin repeats are required for α/β spectrin heterodimer associations and the mutations can alter heterodimer formation between the two spectrins. From these data we suggest that SPTAN1 encephalopathy is a distinct clinical syndrome owing to specific SPTAN1 mutations. It is important that this syndrome is recognized by pediatric neurologists to enable proper diagnostic work-up for patients.
    Matched MeSH terms: Carrier Proteins/genetics*
  18. Chua KH, Puah SM, Chew CH, Wong CH, Goh KL
    Pancreatology, 2011;11(4):441-4.
    PMID: 21952138 DOI: 10.1159/000330943
    Hereditary pancreatitis (HP) is a very rare form of early-onset chronic pancreatitis, which usually begins in childhood with a variable spectrum of severity of disease. HP is commonly caused by variants/mutations in the PRSS1 gene as reported in many studies. Therefore, in this study, we aimed to investigate the possible association of PRSS1 gene variants/mutations in a Malaysian Chinese family with HP.
    Matched MeSH terms: Carrier Proteins/genetics
  19. Eshaghi M, Ali AM, Jamal F, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):23-8.
    PMID: 12186779
    Streptococcus pyogenes ST4547 is an opacity factor negative strain, which has been recently reported as a new emm type from Malaysia. Nucleotide sequencing of the mga regulon of this strain showed the existence of two emm-like genes. The emm gene located upstream of the scpA gene comprises 1305 nucleotides encoding the putative precursor M protein of 435 amino acids in length with an M(r) of 49 kDa. or a predicted mature protein of 394 amino acids with an M(r) of 44.8 kDa. Another gene mrpST4547 was located upstream of the emm gene and downstream of the mga gene. The sequence of this mrp gene comprises 1167 nucleotides encoding a predicted protein of 388 amino acids in length with an M(r) of 42.2 kDa. or a predicted mature protein of 347 amino acids with an M(r) of 37.9 kDa. The mga regulon of strain ST4547 has a mosaic structure comprising segments, which originated from different OF positive and OF negative strains. The sequences flanking the hyper-variable and C repeats of the emmST4547 gene showed high similarity to corresponding regions in the mga regulon of OF positive strains notably M15, M4, M22 and M50. In contrast, the sequence within the hyper-variable and C repeat regions of the emmST4547 gene revealed high similarity to equivalent regions in the OF negative strains. These data indicates that horizontal transfer of emm-like gene could have occurred between OF positive and OF negative strains resulting in architectural divergence in the mga regulon.
    Matched MeSH terms: Carrier Proteins/genetics*
  20. Song JH, Lee NY, Ichiyama S, Yoshida R, Hirakata Y, Fu W, et al.
    Clin Infect Dis, 1999 Jun;28(6):1206-11.
    PMID: 10451154
    Antimicrobial susceptibility of 996 isolates of Streptococcus pneumoniae from clinical specimens was investigated in 11 Asian countries from September 1996 to June 1997. Korea had the greatest frequency of nonsusceptible strains to penicillin with 79.7%, followed by Japan (65.3%), Vietnam (60.8%), Thailand (57.9%), Sri Lanka (41.2%), Taiwan (38.7%), Singapore (23.1%), Indonesia (21.0%), China (9.8%), Malaysia (9.0%), and India (3.8%). Serotypes 23F and 19F were the most common. Pulsed-field gel electrophoresis (PFGE) of 154 isolates from Asian countries showed several major PFGE patterns. The serotype 23F Spanish clone shared the same PFGE pattern with strains from Korea, Japan, Singapore, Taiwan, Thailand, and Malaysia. Fingerprinting analysis of pbp1a, pbp2x, and pbp2b genes of 12 strains from six countries also showed identical fingerprints of penicillin-binding protein genes in most strains. These data suggest the possible introduction and spread of international epidemic clones into Asian countries and the increasing problems of pneumococcal drug resistance in Asian countries for the first time.
    Matched MeSH terms: Carrier Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links