RESULTS: Among the 253 cats included in this study, 12.3% of the whole blood samples tested positive for DCH. The detection rate was significantly higher in pet cats (16.6%, n = 24/145) compared to shelter cats (6.5%, n = 7/108). Liver tissues showed higher a DCH detection rate (14.9%, n = 13/87) compared to blood; 5 out of these 13 cats tested positive for DCH in their paired liver and blood samples. Serum alanine transaminase (ALT) was elevated (> 95 units/L) in 12 out of the 23 DCH-positive cats (52.2%, p = 0.012). Whole-genome sequence analysis revealed that the Malaysian DCH strain, with a genome size of 3184 bp, had 98.3% and 97.5% nucleotide identities to the Australian and Italian strains, respectively. The phylogenetic analysis demonstrated that the Malaysian DCH genome was clustered closely to the Australian strain, suggesting that they belong to the same geographically-determined genetic pool (Australasia).
CONCLUSIONS: This study provided insights into a Malaysian DCH strain that was detected from a liver tissue. Interestingly, pet cats or cats with elevated ALT were significantly more likely to be DCH positive. Cats with positive DCH detection from liver tissues may not necessarily have viraemia. The impact of this virus on inducing liver diseases in felines warrants further investigation.
RESULTS: The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples.
CONCLUSIONS: According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.
STUDY DESIGN: Eighty-six postnasal biopsy samples and 71 fine-needle aspirate samples of neck masses were obtained from patients who were clinically suspect for NPC. Genomic DNA was extracted from the samples, and EBNA1, EBNA2, and LMP genes of EBV were detected by PCR. PCR results were compared with NPC histopathology findings.
RESULTS: The sensitivity of PCR to detect EBNA1 (97.14%), EBNA2 (88.57%), and LMP (91.43%) genes of EBV in nasopharyngeal biopsy samples were higher than those in fine-needle aspirate samples.
CONCLUSION: Detection of EBV by PCR in tissue obtained from nasopharyngeal biopsy and fine-needle aspirate samples of neck masses is a relatively inexpensive, reliable, and accurate method of diagnosing NPC. Detection of EBV genes is on par with histopathological examination (HPE) and superior to fine-needle aspirate cytology.
SIGNIFICANCE: PCR is an ideal tool for suggesting NPC and guiding the diagnostic workup in occult primary tumors, facilitating earlier diagnosis and reducing morbidity and mortality.