Displaying publications 21 - 40 of 141 in total

Abstract:
Sort:
  1. Yong ZJ, Bashir MJK, Hassan MS
    Sci Total Environ, 2021 Jul 01;776:145961.
    PMID: 33640552 DOI: 10.1016/j.scitotenv.2021.145961
    Waste management in Malaysia remains a persistent economic and environmental challenge. Up to date, more than 80% of Malaysian solid waste disposed at landfills and dumpsites. Therefore, Malaysia is facing an urgent need to move towards a sustainable solid waste management and thus resource recovery from organic solid waste. Hence, this study aims to investigate the feasibility of energy and bio fertilizer recovery from organic fraction municipal solid waste (OFMSW) via anaerobic digestion. The economic and environmental benefit analysis was investigated. Approximate and elementary analysis of OFMSW samples were carried out to estimate the potential production of biogas and bio fertilizer. It was found that organic waste contributes about 45% of the total MSW generated in Malaysia. Anaerobic digestion of 50% of organic waste is expected to produce 3941 MWh/day of electrical energy and 2500 t/day of bio fertilizer. In terms of environmental impacts, 2735 t/day of Carbon dioxide (CO2) emission, 1128 m2/day of landfilling area and 481 m3/day of leachate can be avoided. A net revenue of 3300 million RM (1 US Dollar ≈ 4.15 RM) can be generated by the sales of electricity via Feed-in-Tariff (FiT), sales of biofertilizer to local agricultural industries and inclusive of the saving generated from the reduction of OFMSW landfilling operations and leachate treatment at landfills. Economic development can go hand-in-hand with environmental sound practices in the field of waste management.
    Matched MeSH terms: Methane
  2. Khairudin NF, Mohammadi M, Mohamed AR
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29157-29176.
    PMID: 33550559 DOI: 10.1007/s11356-021-12794-0
    This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g-1.h-1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.
    Matched MeSH terms: Methane*
  3. Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, et al.
    Sci Rep, 2021 Mar 19;11(1):6416.
    PMID: 33742002 DOI: 10.1038/s41598-021-81865-6
    Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
    Matched MeSH terms: Methane/metabolism
  4. Shafiullah M, Khalid U, Shahbaz M
    Environ Sci Pollut Res Int, 2021 Mar;28(9):11415-11429.
    PMID: 33118073 DOI: 10.1007/s11356-020-11331-9
    This study empirically investigates the effect of meat consumption on greenhouse gas emissions (carbon dioxide, methane, and nitrous oxide) in the USA. The impact of meat consumption on greenhouse gas emissions is examined by controlling for economic growth and energy consumption. The empirical analysis finds that all these variables are cointegrated for the long run. Moreover, meat consumption aggravates greenhouse gas emissions. Specifically, meat consumption (except for beef) has a U-shaped relationship with carbon emissions and an inverted U-shaped relationship with methane and nitrous oxide emissions. The causality analysis indicates a unidirectional causality running from meat consumption to greenhouse gas emissions. These empirical findings indicate that the US livestock sector has the potential to become more environmentally friendly with careful policy formulation and implementation.
    Matched MeSH terms: Methane/analysis
  5. Lim YF, Chan YJ, Abakr YA, Sethu V, Selvarajoo A, Singh A, et al.
    Environ Technol, 2021 Feb 18.
    PMID: 33502966 DOI: 10.1080/09593330.2021.1882587
    As the population increases, energy demands continue to rise rapidly. In order to satisfy this increasing energy demand, biogas offers a potential alternative. Biogas is economically viable to be produced through anaerobic digestion (AD) from various biomass feedstocks that are readily available in Malaysia, such as food waste (FW), palm oil mill effluent (POME), garden waste (GW), landfill, sewage sludge (SS) and animal manure. This paper aims to determine the potential feedstocks for biogas production via AD based on their characteristics, methane yield, kinetic studies and economic analysis. POME and FW show the highest methane yield with biogas yields up to 0.50 L/g VS while the lowest is 0.12 L/g VS by landfill leachate. Kinetic study shows that modified Gompertz model fits most of the feedstock with R 2 up to 1 indicating that this model can be used for estimating treatment efficiencies of full-scale reactors and performing scale-up analysis. The economic analysis shows that POME has the shortest payback period (PBP), highest internal rate of return (IRR) and net present value (NPV). However, it has already been well explored, with 93% of biogas plants in Malaysia using POME as feedstock. The FW generation rate in Malaysia is approximately 15,000 tonnes per day, at the same time FW as the second place shows potential to have a PBP of 5.4 years and 13.3% IRR, which is close to the results achieved with POME. This makes FW suitable to be used as the feedstock for biogas production.
    Matched MeSH terms: Methane
  6. Lin CY, Lay CH, Chew KW, Nomanbhay S, Gu RL, Chang SH, et al.
    Chemosphere, 2021 Feb;264(Pt 2):128564.
    PMID: 33065325 DOI: 10.1016/j.chemosphere.2020.128564
    Recently, the production of renewable biogas such as biohydrogen and biomethane from wastewaters through anaerobic fermentation has gained worldwide attention. In the present study, a mobile bioenergy generation station had been constructed based on a high-efficiency hydrogenesis & methanogenesis technology (HyMeTek) developed by Feng Chia University, Taiwan. The substrate was a beverage wastewater having chemical oxygen demand (COD) concentration of 1200 mg/L. This bioenergy station had a feedstock tank (3.8 m3), a nutrient tank (0.8 m3), an acidogenesis tank (AT, 2 m3), two methanogenesis tanks (MT, 4 m3 for each), a membrane bioreactor and a control room. Biogas production rate, methane concentration, COD removal efficiencies, energy efficiency and economical interest of the plant were assessed. The peak total methane production rates for AT (at hydraulic retention time, HRT, 4 h) and MT (at HRT 8 h) were 430 and 7 mL/L·d, respectively. A strategy of shortening HRT was a promising method to enhance biogas quality and energy efficiency. This mobile bioenergy system has commercial potential because it could bring good economic benefit of initial rate of return (58.84%) and payback time (2.68 y).
    Matched MeSH terms: Methane
  7. Yan W, Vadivelu V, Maspolim Y, Zhou Y
    Waste Manag, 2021 Feb 01;120:221-229.
    PMID: 33310598 DOI: 10.1016/j.wasman.2020.11.047
    Anaerobic digestion is a promising way for resource recovery from waste cooking oil (WCO) due to its high bio-methanation potential. In-situ mild alkaline (pH 8) enhanced two-stage continuous stirred tank reactors (ALK-2-CSTRs) were implemented to explore its efficiency in co-digesting WCO and sewage sludge with stepwise increase of WCO in the co-substrates. Results demonstrate that the ALK-2-CSTRs effectively promoted methane yield from the co-substrates via promoting hydrolysis, long chain fatty acids (LCFAs) degradation and protecting methanogens from exposure to high concentration of LCFAs directly. The maximum methane yield of the ALK-2-CSTRs is 39.2% higher than that of a single stage CSTR system at the optimal feed mixture of 45:55 (WCO:SS [VS]). The thermophilic operation applied to the stage-1 of the ALK-2-CSTRs failed to improve the methane yield when the methanogenic performance was stable; while upon WCO overloaded, the elevated temperature mitigated the deterioration of methanogenesis by stimulating the bioconversion of the toxic LCFAs, especially the unsaturated oleic acid. Microbial community analysis reveals the ALK-2-CSTRs stimulated the growth of lipolytic bacteria and hydrogenotrophic methanogens, which suggests the hydrogenotrophic methanogenic pathway was promoted. Cost evaluation demonstrates the economical superiority of the ALK-2-CSTR over the prevailing strategies developed for enhancing methane yield from the co-substrates.
    Matched MeSH terms: Methane
  8. Wan Mansor WN, Abdullah S, Jarkoni MNK, Vaughn JS, Olsen DB
    Data Brief, 2020 Dec;33:106580.
    PMID: 33304969 DOI: 10.1016/j.dib.2020.106580
    A diesel engine has been a desirable machine due to its better fuel efficiency, reliability, and higher power output. It is widely used in transportations, locomotives, power generation, and industrial applications. The combustion of diesel fuel emits harmful emissions such as unburned hydrocarbons (HC), particulate matter (PM), nitrogen oxides (NOx), and carbon monoxides (CO). This article presents data on the efficiency, combustion, and emission of a 4-stroke diesel engine. The engine is a 6.8 L turbocharged 6-cylinder Tier II diesel engine fitted with a common rail injection system. The test was carried out at the Powerhouse Energy Campus, Colorado State University Engines and Energy Conversion facility. The ISO Standard 8178:4 Cycle D2 cycle was adopted for this study consists of five test runs at 1800 rpm. During the testing, CO, carbon dioxide (CO2), oxygen (O2), NOx, PM, unburned HC as a total HC (THC), methane (CH4), formaldehyde (CH2O), and volatile organic compound (VOC) emissions were measured. At the same time, the data acquisition system recorded the combustion data. The engine's performance is characterized by the brake specific fuel combustion (BSFC) and thermal efficiency. A dataset of correlations among the parameters was also presented in this article.
    Matched MeSH terms: Methane
  9. Afandi NS, Mohammadi M, Ichikawa S, Mohamed AR
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43011-43027.
    PMID: 32725565 DOI: 10.1007/s11356-020-10269-2
    Several multi-walled carbon nanotubes supported Ni-Ce catalysts were synthesized, and their performance in carbon dioxide reforming of methane (CDRM) for syngas production was evaluated. The attachment of Ni-Ce nanoparticles to the functionalized carbon nanotube (fCNT) support was carried out using four synthesis routes, i.e., impregnation (I), sol-gel (S), co-precipitation (C), and hydrothermal (H) methods. Results indicated that synthesis method influences the properties of the NiCe/fCNT catalysts in terms of homogeneity of metal dispersion, size of crystallites, and metal-support interaction. The activity of the catalysts followed the order of NiCe/fCNT(H) > NiCe/fCNT(S) > NiCe/fCNT(C) > NiCe/fCNT(I). The NiCe/fCNT(H) catalyst exhibited the highest catalytic activity with CH4 and CO2 conversions of 92 and 96%, respectively, and resulted in syngas product with consistent H2/CO ratio of 0.91 at reaction temperature of 800 °C without notable deactivation up to 30 h of reaction. Moreover, the growth of carbon on the spent catalyst was only 2% with deposition rate of 4.08 mg/gcat·h; this was plausibly due to the well-dispersed distribution of nanoparticles on fCNT surface and abundant presence of oxygenated groups on the catalyst surface.
    Matched MeSH terms: Methane
  10. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
    Matched MeSH terms: Methane*
  11. Dhandapani S, Evers S
    Sci Total Environ, 2020 Nov 10;742:140648.
    PMID: 32721749 DOI: 10.1016/j.scitotenv.2020.140648
    Fire is one of the major issues facing Southeast Asian peatlands causing socio-economic, human health and climate crises. Many of these fires in the region are associated with land clearing or management practices for oil palm plantations. Here we study the direct post-fire impacts of slash-and-burn oil palm agriculture on greenhouse gas emissions, peat physico-chemical properties and nutrient concentrations. Greenhouse gas (GHG) emissions were measured using Los Gatos ultraportable greenhouse gas analyser one month after a fire in dry season and five months after the fire event, in wet season. Surface soil samples were collected from each individual GHG measurement points, along with 50 cm cores from both burnt and non-burnt control areas for lab analyses. As an immediate post-fire impact, carbon dioxide (CO2) and methane (CH4) emissions, pH, electrical conductivity, and all macronutrient concentrations except nitrogen (N) were increased multi-fold, while the redox potential, carbon (C) and N content were greatly reduced in the burnt region. While some of the properties such as CO2 emissions, and electrical conductivity reverted to normal after five months, other properties such as CH4 emissions, pH and nutrient concentrations remained high in the burnt region. This study also found very high loss of surface peat C content in the burnt region post fire, which is irreversible. The results also show that surface peat layers up to 20 cm depth were affected the most by slash-and-burn activity in oil palm agriculture, however the intensity of fire can vary widely between different oil palm management and needs further research to fully understand the long term and regional impacts of such slash-and-burn activity in tropical peatlands.
    Matched MeSH terms: Methane
  12. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
    Matched MeSH terms: Methane/analysis
  13. Pang B, Lam SS, Shen XJ, Cao XF, Liu SJ, Yuan TQ, et al.
    ChemSusChem, 2020 Sep 07;13(17):4446-4454.
    PMID: 32118355 DOI: 10.1002/cssc.202000299
    The valorization of lignin to replace phenol is significant in the production of phenolic resins. However, a great challenge is to produce lignin-based resin (LR) with a suitable viscosity and high substitution rate of lignin to phenol. In this study, LRs were produced using hardwood technical lignin derived from the pulping industry. Structural analysis of the LRs indicated that the unsubstituted para and ortho carbon atoms of the aromatic ring influenced the curing temperature and activation energy of the resins. The curing kinetics and thermal decomposition study implied that urea and methylene groups in cured LRs were significant factors that affected the thermal stability negatively. The prepared LRs showed desirable features if used as adhesives to make plywood. This is the first approach in which a substitution rate of up to 65 % is achieved for low-reactive-site hardwood lignin, which provides a solution to the challenge of the simultaneous realization of the high addition of lignin and the adaptive viscosity of resins.
    Matched MeSH terms: Methane
  14. Fauzan NAB, Mukhtar H, Nasir R, Mohshim DFB, Arasu N, Man Z, et al.
    R Soc Open Sci, 2020 Sep;7(9):200795.
    PMID: 33047043 DOI: 10.1098/rsos.200795
    The key challenge in the synthesis of composite mixed matrix membrane (MMMs) is the incompatible membrane fabrication using porous support in the dry-wet phase inversion technique. The key objective of this research is to synthesize thin composite ternary (amine) mixed matrix membranes on microporous support by incorporating 10 wt% of carbon molecular sieve (CMS) and 5-15 wt% of diethanolamine (DEA) in polyethersulfone (PES) dope solution for the separation of carbon dioxide (CO2) from methane (CH4) at high-pressure applications. The developed membranes were evaluated for their morphological structure, thermal and mechanical stabilities, functional groups, as well as for CO2-CH4 separation performance at high pressure (10-30 bar). The results showed that the developed membranes have asymmetric structure, and they are mechanically strong at 30 bar. This new class of PES/CMS/DEA composite MMMs exhibited improved gas permeance compared to pure PES composite polymeric membrane. CO2-CH4 perm-selectivity enhanced from 8.15 to 16.04 at 15 wt% of DEA at 30 bar pressure. The performance of amine composite MMMs is theoretically predicted using a modified Maxwell model. The predictions were in good agreement with experimental data after applying the optimized values with AARE % = ∼less than 2% and R2 = 0.99.
    Matched MeSH terms: Methane
  15. Abdulelah H, Negash BM, Yekeen N, Al-Hajri S, Padmanabhan E, Al-Yaseri A
    ACS Omega, 2020 Aug 18;5(32):20107-20121.
    PMID: 32832765 DOI: 10.1021/acsomega.0c01738
    The influence of an anionic surfactant, a cationic surfactant, and salinity on adsorbed methane (CH4) in shale was assessed and modeled in a series of systematically designed experiments. Two cases were investigated. In case 1, the crushed Marcellus shale samples were allowed to react with anionic sodium dodecyl sulfate (SDS) and brine. In case 2, another set of crushed Marcellus shale samples were treated with cetyltrimethylammonium bromide (CTAB) and brine. The surfactant concentration and salinity of brine were varied following the Box-Behnken experimental design. CH4 adsorption was then assessed volumetrically in the treated shale at varying pressures (1-50 bar) and a constant temperature of 30 °C using a pressure equilibrium cell. Mathematical analysis of the experimental data yielded two separate models, which expressed the amount of adsorbed CH4 as a function of SDS/CTAB concentration, salinity, and pressure. In case 1, the highest amount of adsorbed CH4 was about 1 mmol/g. Such an amount was achieved at 50 bar, provided that the SDS concentration is kept close to its critical micelle concentration (CMC), which is 0.2 wt %, and salinity is in the range of 0.1-20 ppt. However, in case 2, the maximum amount of adsorbed CH4 was just 0.3 mmol/g. This value was obtained at 50 bar and high salinity (∼75 ppt) when the CTAB concentration was above the CMC (>0.029 wt %). The findings provide researchers with insights that can help in optimizing the ratio of salinity and surfactant concentration used in shale gas fracturing fluid.
    Matched MeSH terms: Methane
  16. Prananto JA, Minasny B, Comeau LP, Rudiyanto R, Grace P
    Glob Chang Biol, 2020 08;26(8):4583-4600.
    PMID: 32391633 DOI: 10.1111/gcb.15147
    Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2 O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2  ha-1  year-1 ) than in natural forest (median = 35.9 Mg CO2  ha-1  year-1 ). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2  ha-1  year-1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2 O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha-1  year-1 ). Deeper groundwater levels induced high N2 O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.
    Matched MeSH terms: Methane/analysis
  17. Atif M, Bhatti HN, Haque RA, Iqbal MA, Ahamed Khadeer MB, Majid AMSA
    Appl Biochem Biotechnol, 2020 Jul;191(3):1171-1189.
    PMID: 32002729 DOI: 10.1007/s12010-019-03186-9
    Synthesis and anticancer studies of three symmetrically and non-symmetrically substituted silver(I)-N-Heterocyclic carbene complexes of type [(NHC)2-Ag]PF6 (7-9) and their respective (ligands) benzimidazolium salts (4-6) are described herein. Compound 5 and Ag-NHC-complex 7 were characterized by the single crystal X-ray diffraction technique. Structural studies for 7 showed that the silver(I) center has linear C-Ag-C coordination geometry (180.00(10)o). Other azolium and Ag-NHC analogues were confirmed by H1 and C13-NMR spectroscopy. The synthesized analogues were biologically characterized for in vitro anticancer activity against three cancer cell lines including human colorectal cancer (HCT 116), breast cancer (MCF-7), and erythromyeloblastoid leukemia (K-562) cell lines and in terms of in vivo acute oral toxicity (IAOT) in view of agility and body weight of female rats. In vitro anticancer activity showed the values of IC50 in range 0.31-17.9 μM in case of K-562 and HCT-116 cancer cell lines and 15.1-35.2 μM in case of MCF-7 while taking commercially known anticancer agents 5-fluorouracil, tamoxifen, and betulinic acid which have IC50 values 5.2, 5.5, and 17.0 μM, respectively. In vivo study revealed vigor and agility of all test animals which explores the biocompatibility and non-toxicity of the test analogues.
    Matched MeSH terms: Methane/analogs & derivatives*; Methane/pharmacology; Methane/chemistry
  18. Isa MH, Wong LP, Bashir MJK, Shafiq N, Kutty SRM, Farooqi IH, et al.
    Sci Total Environ, 2020 Jun 20;722:137833.
    PMID: 32199372 DOI: 10.1016/j.scitotenv.2020.137833
    Palm oil mill effluent (POME) is a highly polluted wastewater that consists of a high organic content of 4-5% total solids; a potential renewable energy source. A waste to energy study was conducted to improve biogas production using POME as substrate by ultrasonication pretreatment at mesophilic temperatures. The effect of temperature on the specific growth rate of anaerobes and methanogenic activity was investigated. Five sets of assays were carried out at operating temperatures between 25 °C and 45 °C. Each set consisted of two experiments using identical anaerobic sequencing batch reactors (AnSBR); fed with raw POME (control) and sonicated POME, respectively. The ultrasonication was set at 16.2 min ultrasonication time and 0.88 W mL-1 ultrasonication density with substrate total solids concentration of 6% (w/v). At 25 °C, biogas production rate and organic matter removal exhibited lowest values for both reactors. The maximum organic degradation was 96% from AnSBR operated at 30 °C fed with sonicated POME and 91% from AnSBR operated at 35 °C fed with unsonicated POME. In addition, the methane yield from AnSBR operated at 30 °C was enhanced by 21.5% after ultrasonication pretreatment. A few normality tests and a t-test were carried out. Both tests indicated that the residuals of the experimental data were normality distributed with mean equals to zero. The results demonstrated that ultrasonication treatment was a promising pretreatment to positively affect the organic degradation and biogas production rates at 30-35 °C.
    Matched MeSH terms: Methane
  19. Liew YX, Chan YJ, Manickam S, Chong MF, Chong S, Tiong TJ, et al.
    Sci Total Environ, 2020 Apr 15;713:136373.
    PMID: 31954239 DOI: 10.1016/j.scitotenv.2019.136373
    Oil and grease, carbohydrate, protein, and lignin are the main constituents of high strength wastewaters such as dairy wastewater, cheese whey wastewater, distillery wastewater, pulp and paper mill wastewater, and slaughterhouse wastewaters. These constituents have contributed to various operational problems faced by the high-rate anaerobic bioreactor (HRAB). During the hydrolysis stage of anaerobic digestion (AD), these constituents can be hydrolyzed. Since hydrolysis is known to be the rate-limiting step of AD, the overall AD can be enhanced by improving the hydrolysis stage. This can be done by introducing pretreatment that targets the degradation of these constituents. This review mainly focuses on the biological pretreatment on various high-strength wastewaters by using different types of enzymes namely lipase, amylase, protease, and ligninolytic enzymes which are responsible for catalyzing the degradation of oil and grease, carbohydrate, protein, and lignin respectively. This review provides a summary of enzymatic systems involved in enhancing the hydrolysis stage and consequently improve biogas production. The results show that the use of enzymes improves the biogas production in the range of 7 to 76%. Though these improvements are highly dependent on the operating conditions of pretreatment and the types of substrates. Therefore, the critical parameters that would affect the effectiveness of pretreatment are also discussed. This review paper will serve as a useful piece of information to those industries that face difficulties in treating their high-strength wastewaters for the appropriate process, equipment selection, and design of an anaerobic enzymatic system. However, more intensive studies on the optimum operating conditions of pretreatment in a larger-scale and synergistic effects between enzymes are necessary to make the enzymatic pretreatment economically feasible.
    Matched MeSH terms: Methane
  20. Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Yasar A, et al.
    J Environ Manage, 2020 Apr 15;260:110059.
    PMID: 32090808 DOI: 10.1016/j.jenvman.2019.110059
    This study critically reviews the recent developments and future opportunities pertinent to the conversion of CO2 as a potent greenhouse gas (GHG) to fuels and valuable products. CO2 emissions have reached an alarming level of around 410 ppm and have become the primary driver of global warming and climate change leading to devastating events such as droughts, hurricanes, torrential rains, floods, tornados and wildfires across the world. These events are responsible for thousands of deaths and have adversely affected the economic development of many countries, loss of billions of dollars, across the globe. One of the promising choices to tackle this issue is carbon sequestration by pre- and post-combustion processes and oxyfuel combustion. The captured CO2 can be converted into fuels and valuable products, including methanol, dimethyl ether (DME), and methane (CH4). The efficient use of the sequestered CO2 for the desalinization might be critical in overcoming water scarcity and energy issues in developing countries. Using the sequestered CO2 to produce algae in combination with wastewater, and producing biofuels is among the promising strategies. Many methods, like direct combustion, fermentation, transesterification, pyrolysis, anaerobic digestion (AD), and gasification, can be used for the conversion of algae into biofuel. Direct air capturing (DAC) is another productive technique for absorbing CO2 from the atmosphere and converting it into various useful energy resources like CH4. These methods can effectively tackle the issues of climate change, water security, and energy crises. However, future research is required to make these conversion methods cost-effective and commercially applicable.
    Matched MeSH terms: Methane
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links