OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.
METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.
RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).
CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.
Methods: Ten males recreational runners were randomised to three running trials with a 1 week recovery period between the trials. Each trial involved running at 75% maximum heart rate (HRmax) for 1 h, followed by a 15 min time trial. The participants used a CHO mouth rinse, placebo (PLA) solution or control (CON, no solution) every 15 min during the exercise. Heart rate (HR), rating of perceived exertion (RPE) and mood states were recorded pre-, during and post-exercise. Saliva samples were collected pre-, post- and 1 h post-exercise.
Results: There was no significant interaction and time effect (P > 0.05) on the salivary lysozyme concentration and running performance, but it was significant (P < 0.05) for HR and RPE (increase in all trials). However, there was no significant difference (P > 0.05) in salivary lysozyme concentrations, running performances, HR values or RPE between the trials. Mood states were not significantly different (P > 0.05) between the trials, but one of the mood sub-scales showed a significant (P < 0.001) time effect (increase fatigue in all trials).
Conclusion: CHO mouth rinsing did not affect physiological parameters, salivary lysozyme concentrations, mood states or running performance among recreational runners.