METHODS: The Areca catechu nut collected from Ipoh, Perak, Malaysia was grounded into powder and used for Soxhlet extraction. The chemical analysis of the extracts and their structures were identified using the GCMS-QP2010 Ultra (Shimadzu) system. National Institute of Standards and Technology (NIST) Chemistry WebBook, Standard Reference Database 69 (https://webbook.nist.gov/chemistry/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), the two databases used to retrieve the synonyms, molecular formula, molecular weight, and 2-dimensional (2D) structure of chemical compounds. Next, following WHO procedures for larval bioassays, the extracts were used to asses larvicidal activity against early 4th instar larvae of Aedes aegypti and Aedes albopictus.
RESULTS: The larvicidal activities were observed against early 4th stage larvae with different concentrations in the range from 200 mg/L to 1600 mg/L. The LC50 and LC95 of Aedes aegypti were 621 mg/L and 2264 mg/L respectively; whereas the LC50 and LC95 of Aedes albopictus were 636 mg/L and 2268 mg/L respectively. Mortality was not observed in the non-target organism test. The analysis using gas chromatography and mass spectrometer recovered several chemical compounds such as Arecaidine, Dodecanoic acid, Methyl tetradecanoate, Tetradecanoic acid , and n-Hexadecanoic acid bioactive components. These chemical constituents were used as additive formulations in pesticides, pest control, insect repellent, and insecticidal agents.
CONCLUSIONS: Our study showed significant outcomes from the extract of Areca catechu nut and it deserves further investigation in relation to chemical components and larvicidal actions between different species of Aedes mosquitoes. Even though all these findings are fundamental, it may have some interesting potentials to be developed as natural bio-larvicidal products.
OBJECTIVE: To assess the association of nuts with mortality and cardiovascular disease (CVD).
METHODS: The Prospective Urban Rural Epidemiology study is a large multinational prospective cohort study of adults aged 35-70 y from 16 low-, middle-, and high-income countries on 5 continents. Nut intake (tree nuts and ground nuts) was measured at the baseline visit, using country-specific validated FFQs. The primary outcome was a composite of mortality or major cardiovascular event [nonfatal myocardial infarction (MI), stroke, or heart failure].
RESULTS: We followed 124,329 participants (age = 50.7 y, SD = 10.2; 41.5% male) for a median of 9.5 y. We recorded 10,928 composite events [deaths (n = 8,662) or major cardiovascular events (n = 5,979)]. Higher nut intake (>120 g per wk compared with <30 g per mo) was associated with a lower risk of the primary composite outcome of mortality or major cardiovascular event [multivariate HR (mvHR): 0.88; 95% CI: 0.80, 0.96; P-trend = 0.0048]. Significant reductions in total (mvHR: 0.77; 95% CI: 0.69, 0.87; P-trend <0.0001), cardiovascular (mvHR: 0.72; 95% CI: 0.56, 0.92; P-trend = 0.048), and noncardiovascular mortality (mvHR: 0.82; 95% CI: 0.70, 0.96; P-trend = 0.0046) with a trend to reduced cancer mortality (mvHR: 0.81; 95% CI: 0.65, 1.00; P-trend = 0.081) were observed. No significant associations of nuts were seen with major CVD (mvHR: 0.91; 95% CI: 0.81, 1.02; P-trend = 0.14), stroke (mvHR: 0.98; 95% CI: 0.84, 1.14; P-trend = 0.76), or MI (mvHR: 0.86; 95% CI: 0.72, 1.04; P-trend = 0.29).
CONCLUSIONS: Higher nut intake was associated with lower mortality risk from both cardiovascular and noncardiovascular causes in low-, middle-, and high-income countries.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.
METHODS AND STUDY DESIGN: A case-control study was conducted involving 57 acne vulgaris patients and 57 age-, gender- and ethnicity-matched controls. All participants were aged 14 and above. The Comprehensive Acne Severity Scale (CASS) was used to categorise patients (grades 2 to 5) and controls (grades 0 to 1). Information such as the demographics, family history, smoking habits and dietary intake were collected using a self-administered questionnaire.
RESULTS: In the patient arm, the gender ratio of male to female was 1.5:1. 43 patients (75.4%) had a family history of acne vulgaris. No significant association was found for acne in patients with a history of smoking. Milk consumption was significantly higher in patients (63.2%, n=36) versus controls (43.9%, n=25), (OR=2.19, p<0.05). In addition, chocolate consumption was also significantly higher in patients (43.9%, n=25) versus controls (24.6%, n=14), (OR=2.4, p<0.05). No significant association was found with the intakes of sweets, potatoes, chips, nuts, yoghurt, ice-cream or carbonated drinks.
CONCLUSIONS: Dietary intake of milk and chocolate may play a role in acne vulgaris. Prospective cohort and intervention studies are recommended to explore whether a causal relationship might obtain.
METHODS: Following a single day capacity building program on smokeless tobacco / areca nut control, two self-administered questionnaires were used to assess the improvement of knowledge and change of attitudes among 663 GDPs.
RESULTS: Majority had a good knowledge on harmful effects of SLT but not on areca nut. Knowledge of the current legislation on SLT control in Sri Lanka and carcinogenicity of areca nut was not satisfactory. Almost all agreed that proper counseling leads to patient quitting the habit, a formal training is necessary to conduct tobacco control activities and it should be a part of the regular treatment modalities. More than 80% of the participants support strict legislation. Most important factors leading to poor involvement in tobacco cessation activities were lack of expertise and inadequate educational material and not breach of patient privacy and lack of financial incentives. 20.1% dental surgeons had consumed smokeless tobacco / areca nut products in the past and only a few were current users of tobacco and/or areca nut.
CONCLUSIONS: Well planned workshops are efficient in improving knowledge, practices and attitudes of dental surgeons towards SLT/AN cessation.
.