Displaying publications 21 - 40 of 365 in total

Abstract:
Sort:
  1. Karim Z, Khan MJ, Maskat MY, Adnan R
    Prep Biochem Biotechnol, 2016 May 18;46(4):321-7.
    PMID: 25830286 DOI: 10.1080/10826068.2015.1031389
    This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet-visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.
    Matched MeSH terms: Silver/chemistry*
  2. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
    Matched MeSH terms: Silver/pharmacology*; Silver/chemistry
  3. Ahmad Nazrun Shuid, Mohd Syukri Anwar, Ahmad Asmadi Yusof
    MyJurnal
    This study was carried out to compare the rate of burn wound healing with the applications of the latex of Carica papaya Linn. (papaya) or of silver sulfadiazine cream (SSD). Partial and full thickness burn wound (2 cm x 2 cm) was induced on the dorsal part of anaesthetized rats by using heated metal plates. The rats were divided into three groups, i.e. untreated group and groups treated daily with SSD and papaya latex, respectively. A digital camera was used to take photographs of the burn wounds daily to monitor their healing. It was found that there was no significant difference in the healing time of papaya latex treated group compared to the SSD treated group. Papaya latex contained digestive enzymes which might clean burn wounds but might also cause wound bleeding in a few rats of the papaya latex group.
    Matched MeSH terms: Silver Sulfadiazine
  4. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Silver/administration & dosage*; Silver/chemistry; Silver Nitrate/chemistry
  5. Nawaz M, Abbasi MW, Hisaindee S, Zaki MJ, Abbas HF, Mengting H, et al.
    PMID: 26945123 DOI: 10.1016/j.saa.2016.02.022
    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
    Matched MeSH terms: Silver
  6. Lintang HO, Kinbara K, Yamashita T, Aida T
    Chem Asian J, 2012 Sep;7(9):2068-72.
    PMID: 22431445 DOI: 10.1002/asia.201200041
    An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)-pyrazolate complex ([Au(3)Pz(3)]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au(3)Pz(3)]/silica(hex)), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a Au(I)-Au(I) metallophilic interaction. When a film of [Au(3)Pz(3)]/silica(hex) was dipped into a solution of Ag(+) in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au(3)Pz(3)]/silica(hex)) emitted green light with a new luminescence center at 486 nm, which was characteristic of a Au(I)-Ag(I) heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au(3)Pz(3)]/silica(hex) revealed that Ag(+) ions permeated into the congested nanochannels of [Au(3)Pz(3)]/silica(hex), which were filled with the cylindrical assembly of [Au(3)Pz(3)].
    Matched MeSH terms: Silver/chemistry
  7. Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, et al.
    Int J Biol Macromol, 2017 Sep;102:868-877.
    PMID: 28428128 DOI: 10.1016/j.ijbiomac.2017.04.062
    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu0-Ag0/CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH4. Additionally, the Cu0-Ag0/CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles.
    Matched MeSH terms: Silver/chemistry*
  8. Qing S, Shoutian Q, Hongyan G, Ming Y, Swamy MK, Sinniah UR, et al.
    J Nanosci Nanotechnol, 2019 07 01;19(7):4109-4115.
    PMID: 30764978 DOI: 10.1166/jnn.2019.16282
    This study reports the biosynthesis of silver nanoparticles (AgNPs) using methanolic leaf extract of Pogostemon cablin Benth. (Patchouli) as a reducing agent, and their potent biological (antibacterial, antioxidant and anticancer) activities. The P. cablin extract when exposed to silver nitrate reduced silver ions to form crystalline AgNPs within 1 h of incubation at room-temperature. UV-visible spectra showed a sharp surface plasmon resonance (SPR) at around 430 nm for the biosynthesized AgNPs and the XRD pattern indicated the crystalline planes of the face centered cubic silver. The FE-SEM analysis revealed the occurrence of predominant spherical shaped AgNPs with a huge disparity in their particle size distribution with an average size of 25 nm, while, the FTIR data confirmed the bio-reduction and capping of AgNPs by several phytocompounds present in the methanolic leaf extract. AgNPs effectively inhibited the growth of all the tested human pathogenic bacterial strains (Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli), while, the methanolic leaf extract failed to inhibit the growth of S. aureus and P. aeruginosa. AgNPs showed the highest free radical scavenging activity (79.0 ± 0.76%) compared to methanolic leaf extract (68.3 ± 0.68%) at 100 μg/ml. Further, the cytotoxicity study using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) confirmed that AgNPs successfully inhibited the human colon adenocarcinoma cell line (HT-29) in a dose dependent manner. At higher concentrations (500 μg/ml), only 4% of cells survived after 72 hrs of exposure with IC50 value of 120 μg/ml. Thus, these findings offer a new source of biomolecules with diverse biological activities.
    Matched MeSH terms: Silver/pharmacology
  9. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Silver/pharmacology; Silver/chemistry
  10. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
    Matched MeSH terms: Silver/pharmacology*
  11. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
    Matched MeSH terms: Silver
  12. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip B, Othman N, Hossain S, et al.
    Environ Res, 2022 03;204(Pt A):111926.
    PMID: 34461120 DOI: 10.1016/j.envres.2021.111926
    The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 μL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 μl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.
    Matched MeSH terms: Silver
  13. Centeno A, Xie F, Alford N
    IET Nanobiotechnol, 2013 Jun;7(2):50-8.
    PMID: 24046905
    Metal-induced fluorescence enhancement (MIFE) is a promising strategy for increasing the sensitivity of fluorophores used in biological sensors. This study uses the finite-difference time-domain technique to predict the fluorescent enhancement rate of a fluorophore molecule in close proximity to a gold or silver spherical nanoparticle. By considering commercially available fluorescent dyes the computed results are compared with the published experimental data. The results show that MIFE is a complex coupling process between the fluorophore molecule and the metal nanoparticle. Nevertheless using computational electromagnetic techniques to perform calculations it is possible to calculate, with reasonable accuracy, the fluorescent enhancement. Using this methodology it will be possible to consider different shaped metal nanoparticles and any supporting substrate material in the future, an important step in building reliable biosensors capable of detecting low levels of proteins tagged with fluorescence molecules.
    Matched MeSH terms: Silver/chemistry*
  14. Nisar M, Khan SA, Qayum M, Khan A, Farooq U, Jaafar HZ, et al.
    Molecules, 2016 Mar 25;21(4):411.
    PMID: 27023506 DOI: 10.3390/molecules21040411
    The fluoroquinolone antibacterial drug ciprofloxacin (cip) has been used to cap metallic (silver and gold) nanoparticles by a robust one pot synthetic method under optimized conditions, using NaBH₄ as a mild reducing agent. Metallic nanoparticles (MNPs) showed constancy against variations in pH, table salt (NaCl) solution, and heat. Capping with metal ions (Ag/Au-cip) has significant implications for the solubility, pharmacokinetics and bioavailability of fluoroquinolone molecules. The metallic nanoparticles were characterized by several techniques such as ultraviolet visible spectroscopy (UV), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods. The nanoparticles synthesized using silver and gold were subjected to energy dispersive X-ray tests in order to show their metallic composition. The NH moiety of the piperazine group capped the Ag/Au surfaces, as revealed by spectroscopic studies. The synthesized nanoparticles were also assessed for urease inhibition potential. Fascinatingly, both Ag-cip and Au-cip NPs exhibited significant urease enzyme inhibitory potential, with IC50 = 1.181 ± 0.02 µg/mL and 52.55 ± 2.3 µg/mL, compared to ciprofloxacin (IC50 = 82.95 ± 1.62 µg/mL). MNPs also exhibited significant antibacterial activity against selected bacterial strains.
    Matched MeSH terms: Silver/chemistry
  15. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Silver/metabolism; Silver/pharmacology*; Silver/radiation effects; Silver/chemistry
  16. Muhammad F, Tahir M, Zeb M, Kalasad MN, Mohd Said S, Sarker MR, et al.
    Sci Rep, 2020 Mar 16;10(1):4828.
    PMID: 32179797 DOI: 10.1038/s41598-020-61602-1
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.
    Matched MeSH terms: Silver
  17. Mahmoudian MR, Basirun WJ, Woi PM, Yousefi R, Alias Y
    Anal Bioanal Chem, 2019 Jan;411(2):517-526.
    PMID: 30498983 DOI: 10.1007/s00216-018-1476-x
    We report a green synthesis of oatmeal ZnO/silver composites in the presence of L-glutamine as an electrochemical sensor for Pb2+ detection. The synthesis was performed via the direct reduction of Ag+ in the presence of L-glutamine in NaOH. X-ray diffraction indicated that the Ag+ was completely reduced to metallic Ag. The field emission scanning electron microscopy (FESEM) and energy dispersive X-ray results confirmed an oatmeal-like morphology of the ZnO with the presence of Ag. The FESEM images showed the effect of L-glutamine on the ZnO morphology. The EIS results confirmed a significant decrease in the charge transfer resistance of the modified glassy carbon electrode due to the presence of Ag. From the differential pulse voltammetry results, a linear working range for the concentration of Pb2+ between 5 and 6 nM with LOD of 0.078 nM (S/N = 3) was obtained. The sensitivity of the linear segment is 1.42 μA nM-1 cm-2. The presence of L-glutamine as the capping agent and stabilizer decreases the size of Ag nanoparticles and prevents the agglomeration of ZnO, respectively. Graphical abstract ᅟ.
    Matched MeSH terms: Silver
  18. Chong WX, Lai YX, Choudhury M, Amalraj FD
    J Prosthet Dent, 2022 Nov;128(5):1114-1120.
    PMID: 33685653 DOI: 10.1016/j.prosdent.2021.01.010
    STATEMENT OF PROBLEM: The presence of biofilms on maxillofacial silicone increases the risk of infections and reduces durability. Whether silver nanoparticles (AgNPs) with potent antimicrobial effects help reduce biofilm formation is unclear.

    PURPOSE: The purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro.

    MATERIAL AND METHODS: Silicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA.

    RESULTS: AgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (Psilver ion leaching, and cellular internalization. Mixed species biofilm needs further exploration with standardized study parameters.

    Matched MeSH terms: Silver/pharmacology
  19. Qamer S, Romli MH, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, et al.
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443644 DOI: 10.3390/molecules26165057
    The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.
    Matched MeSH terms: Silver/chemistry*
  20. Koosha N, Mosavi V, Kheirollah J, Najafi N, Abdi N, Alizadeh A, et al.
    J Therm Biol, 2023 Oct;117:103718.
    PMID: 37812951 DOI: 10.1016/j.jtherbio.2023.103718
    The study of blood flow in obstructed arteries is a significant focus in computational fluid dynamics, particularly in the field of biomedicine. The primary objective of this research is to investigate the impact of pulsating blood velocity on heat transfer within biological systems, with a specific focus on blood flow in obstructed arteries. To achieve this goal, a comprehensive 3D model representing a straight, constricted blood vessel has been developed. This model incorporates periodic, unsteady, Newtonian blood flow along with the presence of gold and silver nanoparticles. Leveraging the Finite Element Method (FEM), the Navier-Stokes and energy equations have been rigorously solved. Through the investigation, it is aim to shed light on how alterations in the pulsation rate and the volume fraction of nanoparticles influence both temperature distribution and velocity profiles within the system. The present study findings unequivocally highlight that the behavior of pulsatile nanofluid flow significantly impacts the velocity field and heat transfer performance. However, it is imperative to note that the extent of this influence varies depending on the specific volume fractions involved. Specifically, higher volume fractions of nanofluids correlate with elevated velocities at the center of the vessel and decreased velocities near the vessel walls. This pattern also extends to the temperature distribution and heat flux within the vessel, further underscoring the paramount importance of pulsatile flow dynamics in biomedicine and computational fluid dynamics research. Besides, results revealed that the presence of occlusion significantly affects the heat transfer and fluid flow.
    Matched MeSH terms: Silver
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links