Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Zaini Hamzah, Marlinda Musa, Ahmad Saat
    MyJurnal
    There are many essential and non-essential elements including metals and radionuclides present in vegetables. Howeve r, the accumulation of the several metals and radionuclides might cause the contamination to vegetables itself. Green m ustard (Brasissca rapa var. Parachinesis L.) was selected to represent the vegetable in this study. Objectives of this stud y are to determine the concentration of metals and radionuclides in the samples and to calculate the enrichment factor ( EF) and also to estimate the uptake, base on biological accumulation coefficient (BAC), for the various parts of selecte d vegetables. Three farmlands in the Cameron Highlands were studied namely Bharat, Kg Raja and Bertam area. The g reen mustard and soil samples were collected during the harvest season. Samples were dried, ground and sieved prior t o analysis. Analyses for both samples were done by using X-rays Fluorescence Spectroscopy (XRF) to measure the conc entration of Fe, Zn, Hg, U and Th. The concentration of all elements in the soils is lower than their concentration in the control soil, except for Zn, U and Th. The concentration of all elements in Green Mustard is lower than their concentrat ion in the soil where it was grown. The EF values in the Brasissca rapa var. Parachinesis L are lower than 2 except for U and Th, indicating some degree of contamination due to anthropogenic activities or naturally origin. The BAC values show that Zn and Hg were accumulated in the green mustard, depending on where the plant grows.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  2. Hishamuddin Husain, Anasyida Abu Seman, Abdul Razak Daud, Muhamad Daud
    MyJurnal
    Even though a lot of new advanced materials have been developed nowadays, steel remains a major material in construction, automobiles, appliances, industrial machinery as well as in the nuclear industry. Due to steel easily corroded, a proper surface protection is required to avoid any failures and extended the life cycle of the components. Surface coating is an efficient and economical method to obtain desirable material surfaces properties. Hot dip aluminizing technique was utilized in this study. Experiments have been conducted on the mild steel substrates with 12mm diameter. Prior to hot dipping process, observation on grain growth at three different temperatures had also been conducted to understand the behaviour of steel under application of heat. The substrates were heated at 700ºC, 800ºC and 900ºC for 1 hour and the microstructure was analyzed. The temperature of 800C was chosen for hot dipping. The substrates were dipped into the molten aluminum maintained at temperature 800ºC for 2,4,6,8,10,15 and 20 minutes. Optical microscopy and energy dispersive X-ray spectroscopy were used in this investigation. From the microstructure observation, it showed the appearance of intermetallic layer covered by the top layer of Al on the mild steel substrate increased with the increase in dipping time ranging from 36 to 282μm. The result of EDX analysis revealed the existence of Fe and Al in form of Fe2Al5 phase for all the dipping time.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  3. Meriam Suhaimy SH, Lai CW, Tajuddin HA, Samsudin EM, Johan MR
    Materials (Basel), 2018 Oct 23;11(11).
    PMID: 30360462 DOI: 10.3390/ma11112066
    There are various approaches to enhancing the catalytic properties of TiO₂, including modifying its morphology by altering the surface reactivity and surface area of the catalyst. In this study, the primary aim is to enhance the photocatalytic activity by changing the TiO₂ nanotubes' architecture. The highly ordered infrastructure is favorable for a better charge carrier transfer. It is well known that anodization affects TiO₂ nanotubes' structure by increasing the anodization duration which in turn influence the photocatalytic activity. The characterizations were conducted by FE-SEM (fiend emission scanning electron microscopy), XRD (X-ray diffraction), RAMAN (Raman spectroscopy), EDX (Energy dispersive X-ray spectroscopy), UV-Vis (Ultraviolet visible spectroscopy) and LCMS/MS/MS (liquid chromatography mass spectroscopy). We found that the morphological structure is affected by the anodization duration according to FE-SEM. The photocatalytic degradation shows a photodegradation rate of k = 0.0104 min-1. It is also found that a mineralization of Simazine by our prepared TiO₂ nanotubes leads to the formation of cyanuric acid. We propose three Simazine photodegradation pathways with several intermediates identified.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  4. YAHYA S, OTHMAN N, DAUD A, JALAR A
    Sains Malaysiana, 2013;42:1793-1798.
    The effect of corrosion inhibition of low carbon steel in water based medium containing lignin was investigated via weight loss method. The evolution of surface morphology has been carried out for 7 to 42 days via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron microscopy (XPS). Immersion of metal specimen without lignin shows that significant increase in the surface roughness. The longer the immersion time, the more the oxide crust formed. The surface degradation of metal specimen was well protected by immersion in lignin solution. A protective layer containing of lignin was formed on the surface of metal specimens after 7 and 21 days immersion. The corrosion inhibition gives about 13 and 53% inhibition for both 7 and 21 days immersion, respectively. The protective layers were spalling and separated from the metal surface after 42 days immersion in lignin solution possibly due to the increase in corrosion attack after long time immersion according to the increase in dissolved oxygen and may also due to the thermal mismatch between oxide and substrate. The adsorption of protective layer containing lignin was temporary adsorbed on the surface.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  5. Yap CC, Muhammad Yahaya, Muhamad Mat Salleh, Dee CF
    Sains Malaysiana, 2008;37:233-237.
    ZnO nanowires have been synthesized using a catalyst-free carbothermal reduction approach on SiO2-coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nanowires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nanowires was achieved by manipulating the reactants heating temperature from 700 to 1000 oC. It was found that the optimum temperature to synthesize high density and long ZnO nanowires was about 800 0C. The possible growth mechanism of ZnO nanowires is also proposed.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  6. Azani NFSM, Haafiz MKM, Zahari A, Poinsignon S, Brosse N, Hussin MH
    Int J Biol Macromol, 2020 Jun 15;153:385-398.
    PMID: 32145234 DOI: 10.1016/j.ijbiomac.2020.03.020
    Oil palm frond (OPF) is one of largest contributions to the biomass waste from oil palm plantation. In this work, OPF has been successfully utilized to prepare cellulose nanocrystal (OPF-CNC) by acid hydrolysis. OPF was initially treated with autohydrolysis treatment. The obtained OPF-CNC was characterized via complementary analyses. The produced OPF-CNC showed a high crystallinity index value (60%) and high BET surface area (26.10 m2 g-1) as compared to α-cellulose (crystallinity index: 54% and BET surface area:7.14 m2g-1). The surface analyses via scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrated that the OPF-CNC has a smooth surface with a needle-like shape, where the average length and diameter are 95.09 nm and 6.81 nm, respectively. The corrosion analyses via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) illustrate that the coated mild steel with the inclusion of 0.5 wt% OPF-CNC has managed to sharply reduce the corrosion (99%). The coated mild steel with the inclusion of 0.5 wt% OPF-CNC showed the highest hydrophobicity (100.5 ± 0.7°) and has lowest amount of O via water contact angle and energy dispersive X-ray spectroscopy (EDX) analyses respectively, indicating lowest corrosion rate.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  7. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Int J Biol Macromol, 2019 Jul 01;132:592-599.
    PMID: 30922914 DOI: 10.1016/j.ijbiomac.2019.03.191
    This research aimed to improve the stability of Chlorella-Alginate Beads (CABs) by zeolite molecular sieves 13X. Dissolution time of synthesized Zeolite-Algal-Alginate Beads (ZABs) in a chelating agent revealed a significant improvement on the beads stability (78.5 ± 0.5 min) compared to the control beads (51.5 ± 0.5 min) under the optimum conditions of zeolite/alginate (1.5:1), pH 5 and 2% of beads. Monitoring cell growth during 5 days of incubation showed good biocompatibility of zeolite 13X. Scanning electron microscopy (SEM) indicated rough surface and spherical shapes of ZABs. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) of ZABs confirmed the presence of zeolite 13X within the matrix. The zeta potential value of ZABs indicated that the beads were relatively stable. The findings of this research showed that zeolite molecular sieves 13X have the potential to improve the stability of algal-alginate beads compared to common beads.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  8. Phatai P, Srisomang R
    Sains Malaysiana, 2016;45:1477-1485.
    In this study, the adsorption efficiency of methyl violet (MV) dye onto Ce0.3Al0.7 and Ce0.3Al0.7Agx (x = 0.1, 0.3 & 0.5) mixed oxides was investigated. The properties of mixed oxide were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), N2 adsorption-desorption isotherm, diffuse reflectance UV-vis spectroscopy (UV-vis DRS) and X-ray absorption near edge structure (XANES). Characterization showed that synthesized mixed oxide with fluorite has a pure cubic structure of a mesoporous nature and a small grain size with rough surface. Batch adsorption experiments were used to study parameters including contact time and initial dye concentration. The results showed that these parameters affected the degree of MV dye adsorption. The dye adsorption of mixed oxides attained equilibrium at 120 min. The equilibrium adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherms. The adsorption behavior of MV dye onto Ce0.3Al0.7 was found to follow the Langmuir isotherm (R2 = 0.9951), providing a maximum monolayer adsorptive capacity of 2.35 mg/g. Alternatively, the adsorption of MV dye onto Ce0.3Al0.7Ag0.1 (R2 = 0.7839), Ce0.3Al0.7Ag0.3 (R2 = 0.9301) and Ce0.3Al0.7Ag0.5 (R2 = 0.9396) followed the Freundlich isotherm. The possible adsorption mechanisms of MV dyes onto the Ce0.3Al0.7 and Ce0.3Al0.7Agx were also discussed.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  9. Norinsan Kamil Othman, Solhan Yahya, Denni Asra Awizar
    Sains Malaysiana, 2016;45:1253-1258.
    Anticorrosive properties of nano silicate from paddy husk in salt medium was investigated via weight loss method, Tafel
    polarization and impedance techniques. Prior to the corrosion test, the silica powder was obtained from burning the
    rice husk and extended with a chemical treatment process. The size of silica powder was characterized via zeta sizer and
    showed the amount of micro silica particle appear more than the nano size particle. Nano silica powder was produced
    from the refluxing process of micro silica to enhance the good properties of silica particle. The corrosion inhibition
    efficiency of nano silicate showed good inhibition with increased in inhibitor concentrations. Weight loss test exhibits
    high inhibition as more than 80% even, immersed in the corrosive medium until 14 days. The nano silicate inhibitor
    affected the anodic reaction as showed by Tafel plot analysis. Impedance results also correlated with other test as shown
    by the large size of Nyquist semicircle which represents as high resistance of charge transfer. The surface morphology
    of inhibited specimen showed a smooth surface after nano silicate inhibitor applied in the NaCl medium as observed
    through scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX).
    Matched MeSH terms: Spectrometry, X-Ray Emission
  10. Fayeka M, Haseeb A, Fazal MA
    Sains Malaysiana, 2017;46:295-302.
    Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  11. Lam SE, Mat Nawi SN, Abdul Sani SF, Khandaker MU, Bradley DA
    Sci Rep, 2021 04 12;11(1):7939.
    PMID: 33846448 DOI: 10.1038/s41598-021-86942-4
    Preliminary study has been made of black human hair, carbon concentration of some 53%, a model in examining the potential of hair of the human head in retrospective and emergency biodosimetry applications, also offering effective atomic number near to that of water. The hair samples were exposed to [Formula: see text]Co gamma rays, delivering doses from 0 to 200 Gy. Structural alterations were observed, use being made of Raman and photoluminescence (PL) spectroscopy. Most prominent among the features observed in the first-order Raman spectra are the D and G peaks, appearing at 1370 [Formula: see text] and 1589 [Formula: see text] respectively, the intensity ratio [Formula: see text] indicating dose-dependent defects generation and annealing of structural alterations. The wavelengths of the PL absorption and emission peaks are found to be centred at [Formula: see text] nm and [Formula: see text] nm, respectively. The hair samples mean band gap energy ([Formula: see text]) post-irradiation was found to be [Formula: see text] eV, of the order of a semiconductor and approximately two times the [Formula: see text] of other carbon-rich materials reported via the same methodology.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  12. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  13. Chia PY, Haseeb ASMA, Mannan SH
    Materials (Basel), 2016 May 31;9(6).
    PMID: 28773552 DOI: 10.3390/ma9060430
    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu₃Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)₆Sn₅ and (Cu,Ni)₃Sn, respectively. Details of the reaction sequence and mechanisms are discussed.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  14. Shukri A, Green S, Bradley DA
    Appl Radiat Isot, 1995 6 1;46(6-7):625.
    PMID: 7633384
    Matched MeSH terms: Spectrometry, X-Ray Emission/methods
  15. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  16. Basri S, Kamarudin SK, Daud WR, Yaakob Z, Kadhum AA
    ScientificWorldJournal, 2014;2014:547604.
    PMID: 24883406 DOI: 10.1155/2014/547604
    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  17. Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R
    Sci Rep, 2014;4:3645.
    PMID: 24413195 DOI: 10.1038/srep03645
    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  18. Ahmad M, Uzir Wahit M, Abdul Kadir MR, Mohd Dahlan KZ
    ScientificWorldJournal, 2012;2012:474851.
    PMID: 22666129 DOI: 10.1100/2012/474851
    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  19. Md Khudzari J, Wagiran H, Hossain I, Ibrahim N
    J Environ Radioact, 2013 Jan;115:1-5.
    PMID: 22846873 DOI: 10.1016/j.jenvrad.2012.05.013
    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  20. Tham YJ, Latif PA, Abdullah AM, Shamala-Devi A, Taufiq-Yap YH
    Bioresour Technol, 2011 Jan;102(2):724-8.
    PMID: 20884200 DOI: 10.1016/j.biortech.2010.08.068
    In the effort to find alternative low cost adsorbent for volatile organic vapors has prompted this research in assessing the effectiveness of activated carbon produced from durian shell in removing toluene vapors. Durian shells were impregnated with different concentrations of H3PO4 followed by carbonization at 500 °C for 20 min under nitrogen atmosphere. The prepared durian shell activated carbon (DSAC) was characterized for its physical and chemical properties. The removal efficiency of toluene by DSAC was performed using different toluene concentrations. Results showed that the highest BET surface area of the produced DSAC was 1404 m2/g. Highest removal efficiency of toluene vapors was achieved by using DSAC impregnated with 30% of acid concentration heated at 500 °C for 20 min heating duration. However, there is insignificant difference between removal efficiency of toluene by DSAC and different toluene concentrations. The toluene adsorption by DSAC was better fitted into Freundlich model.
    Matched MeSH terms: Spectrometry, X-Ray Emission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links