Even though a lot of new advanced materials have been developed nowadays, steel remains a major material in construction, automobiles, appliances, industrial machinery as well as in the nuclear industry. Due to steel easily corroded, a proper surface protection is required to avoid any failures and extended the life cycle of the components. Surface coating is an efficient and economical method to obtain desirable material surfaces properties. Hot dip aluminizing technique was utilized in this study. Experiments have been conducted on the mild steel substrates with 12mm diameter. Prior to hot dipping process, observation on grain growth at three different temperatures had also been conducted to understand the behaviour of steel under application of heat. The substrates were heated at 700ºC, 800ºC and 900ºC for 1 hour and the microstructure was analyzed. The temperature of 800C was chosen for hot dipping. The substrates were dipped into the molten aluminum maintained at temperature 800ºC for 2,4,6,8,10,15 and 20 minutes. Optical microscopy and energy dispersive X-ray spectroscopy were used in this investigation. From the microstructure observation, it showed the appearance of intermetallic layer covered by the top layer of Al on the mild steel substrate increased with the increase in dipping time ranging from 36 to 282μm. The result of EDX analysis revealed the existence of Fe and Al in form of Fe2Al5 phase for all the dipping time.