Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, et al.
    PMID: 38113556 DOI: 10.1016/j.saa.2023.123743
    Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.
    Matched MeSH terms: Spectrometry, X-Ray Emission/methods
  2. Bakr ZH, Wali Q, Ismail J, Elumalai NK, Uddin A, Jose R
    Data Brief, 2018 Jun;18:860-863.
    PMID: 29900250 DOI: 10.1016/j.dib.2018.03.110
    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO2-TiO2) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanowire for dye-sensitized solar cells" [1].
    Matched MeSH terms: Spectrometry, X-Ray Emission
  3. Wan Nasarudin Wan Jalal, Huda Abdullah, Mohd Syafiq Zulfakar, Sahbudin Shaari, Mohammad Thariqul Islam, Badariah Bais
    Sains Malaysiana, 2014;43:833-842.
    CaxZn(1_x)Al204thin films (x = 0.00; 0 .05 ; 0.10; 0.15 and 0.20) were prepared by sol-gel method with the substitution of Zn2+ by Ca" in the framework of ZnAl204. The effect of Ca addition on the structure and morphology of CaZnAl204thin films was investigated by x-ray diffraction (xRD), field-emission scanning electron microscope (FESEM), energy-dispersive x-ray spectroscopy (EDx), ultra-violet visible (uv-Vis) and atomic force microscope (AFM). The xRD patterns showed the characteristic peaks of face-centred cubic (fcc)ZnAl204and CaZnAl204. The addition of Ca increased the crystallite size from 8.9 to 302 nm. The bandgap of CaxZnuld204 thin film was found in the range of 3.40 to 3.84 eV. sEm micrograph shows the morphology of all thin films is sphere-like, with the grain size increased from 33 to 123 nm. The AFM images show the roughness of surface morphology increased. The substitution of Zn2+ by Ca" increased the crystallite size, grain size and surface roughness which evidently increased the density (4.59 to 4.64 glcm3) and dielectric constant (8.48 to 9.54). The composition of CaxZn(1_x)Al204is considered as suitable material for GPS patch antennas.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  4. Mostafa SA, Ahmed N, Almeshal I, Tayeh BA, Elgamal MS
    Environ Sci Pollut Res Int, 2022 Oct;29(50):75380-75401.
    PMID: 35655017 DOI: 10.1007/s11356-022-20779-w
    This research aimed to investigate the effect of nanorice husk ash (NRHA) prepared using different thermal treatment methods on ultra-high-performance concrete (UHPC) behaviour. NRHA was prepared by two methods: (1) burning for 3 h at 300, 500, 700 and 900 °C and (2) burning for different durations (9, 7, 5 and 3 h) at 300, 500, 700 and 900 °C. NRHA was added to UHPC to make 25 mixtures with three dosages (1%, 3% and 5%). Density, compressive strength, tensile strength, flexure strength and ultrasonic pulse velocity tests were performed at the experimental level. Moreover, full microstructure analysis, including X-ray diffractometry, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy, was performed. The best performances in in the first method (constant duration, different temperatures) were obtained by 1% NRHA burned at 900 °C with 12.5% compressive strength and 1% NRHA burned at 700 °C with increased ratio (10%). Moreover, the best performance in the second method (different burning durations and temperatures) was obtained by 3% NRHA with a ratio of 22.5% at 700 °C for 5 h. Burning rice husk ash improved the compressive strength. It also remarkably improved the splitting tensile strength and flexure strength by 32% and 47%, respectively, at 3% NRHA treated at 700 °C for 3 h. The microstructural analysis showed the efficient role of NRHA in the compactness of concrete sections. It improved the formation of new calcium silicate hydrate gel; decreased the cracks, voids, CaCO3 and Ca(OH)2; and increased the Ca/Si composition. The obtained experimental results were used to build an artificial neural network (ANN) to predict UHPC properties. The ANN model was used as a validation tool to determine the correlation between results. Results showed a remarkable improvement in the mechanical properties of UHPC incorporating NRHA for all mixtures. The ANN model indicated a reliable correlation between input and output variables. The R2 values for the training, validation and testing steps were all 0.99.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  5. Naz MY, Ismail NI, Sulaiman SA, Shukrullah S
    Sci Rep, 2015;5:16583.
    PMID: 26561231 DOI: 10.1038/srep16583
    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  6. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Uda MNA, et al.
    3 Biotech, 2021 May;11(5):205.
    PMID: 33868892 DOI: 10.1007/s13205-021-02740-9
    This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  7. Fayyadh OA, Arifin INA, Khairudin A, Hassan J, Abubakar S, Talib ZA, et al.
    J Nanosci Nanotechnol, 2020 May 01;20(5):3157-3163.
    PMID: 31635660 DOI: 10.1166/jnn.2020.17386
    Indium antimonide nanowires were synthesized by electrochemical deposition using anodic aluminum oxide template in the presence of gold film as conductive layers. Field emission scanning electron microscopy and energy dispersive X-ray spectrometry measurements were carried out to investigate the effect of adhesive insulated tape covered below the conductive layer. Results showed that the anodic aluminum oxide template covered with insulating tapes had better morphology with less presence of overgrown rough film on the topside of the anodic aluminum oxide template and it exhibited a smoother nanowire sidewall as compared to the uncovered ones. Additionally, the unique properties of anodic aluminum oxide were controllable pore diameter with a narrow size distribution at some intervals. It was evident from the energy dispersive X-ray spectrum that the nanowires synthesized from the covered template condition exhibited better InSb composition and stoichiometric ratio compared to the uncovered template condition.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  8. Zaini Hamzah, Nurul Latiffah Abd Rani, Ahmad Saat
    MyJurnal
    Measurement of major cation such as Na+, K+, and Ca2+ in water are normally carried out using
    AAS, ICP-OES or flame photometry. In this study, an attempt was made to measure these cations
    using Energy Dispersive X-ray Fluorescent Spectrometry (EDXRF). Hot spring s water was taken from varies hot spring in Selangor and divided into two portions that is filtered and unfiltered. 5 mL of water samples were pipette into a special liquid cups (sample holders) which has a thin mylar film underneath. The MiniPal4 XRF instrument was used in this study. The resolution for the instrument use is 145 keV with energy resolution at 5.9 keV. The spectrum of cations were analysed by using MiniPal/MiniMate software to determine the cations concentration. For K+ and Ca2+, Al-thin filter was used and default filter was used for Na+. The concentration of Na+ obtained for filtered and unfiltered samples were ranged from 38.00 to 66.05 and 43.26 to 76.95 ppm. Meanwhile, concentrations of K+ for filtered and unfiltered samples were ranged from 2.42 to 8.07 and 6.18 to 29.28 ppm. Concentrations of Ca2+ for filtered and unfiltered samples were ranged from 2.59 to 10.94 and 3.18 to 12.99 ppm.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  9. Syazwan Hafiz Mohd, Wan Elhami Wan Omar, Ai-Hong Chen
    MyJurnal
    This paper examines the chemical elements used as colour additives in cosmetic coloured contact lenses (Cos-CCL) using Field Emission Scanning Electron Microscope equipped with Energy Dispersive X-ray Spectroscopy (FESEM-EDX) analysis. The samples comprised two different Cos-CCL brands and colours (sample A1-black iris colour & B1-gray iris colour) with their respective clear contact lens counterparts as controls (sample A2 & B2). The parameters of Cos-CCL were observed carefully so that they resembled their respective controls. All the samples were analysed for chemical element characterisation by using EDX spectroscopy surface mapping analysis on both front and back surfaces. EDX spectroscopy point analysis was done on cross-section surface of Cos-CCL when colour additive pattern could not be detected by FESEM on either surface. FESEM-EDX spectroscopy analysis has revealed iron element in the colour additives of the A1 sample and aluminium elements in the B2 sample. These two elements were not present in the respective control samples. It can be concluded that iron and aluminium elements are exclusively attributed to the colour additive in Cos-CCL samples. It is important for manufacturers of Cos-CCL to disclose information of their products and create greater awareness on the risks facing users.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  10. Solodovnikov SF, Atuchin VV, Solodovnikova ZA, Khyzhun OY, Danylenko MI, Pishchur DP, et al.
    Inorg Chem, 2017 Mar 20;56(6):3276-3286.
    PMID: 28266857 DOI: 10.1021/acs.inorgchem.6b02653
    Cs2Pb(MoO4)2crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm3, among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs2Pb(MoO4)2was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs2Pb(MoO4)2, the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  11. Ababneh B, Tajuddin AA, Hashim R, Shuaib IL
    Australas Phys Eng Sci Med, 2016 Dec;39(4):871-876.
    PMID: 27628943 DOI: 10.1007/s13246-016-0482-6
    This paper reports the novel use of almond gum as a binder in manufacturing Rhizophora spp. particleboard. X-ray fluorescence spectroscopy was employed for analysis under photon energy range of 16.6-25.3 keV. Results showed that almond gum-bonded Rhizophora spp. particleboard can be used as tissue-equivalent phantom in diagnostic radiation. The calculated mass attenuation coefficients of the particleboards were consistent with the values of water calculated using XCOM program for the same photon energies, with p values of 0.056, 0.069, and 0.077 for samples A8, C0, and C8, respectively. However, no direct relationship was found between the percentage of adhesive and the mass attenuation coefficient. The results positively supported the use of almond gum as a binding agent in the fabrication of particleboards, which can be used as a phantom material in dosimetric and quality control applications.
    Matched MeSH terms: Spectrometry, X-Ray Emission*
  12. Ali K, Khan SA, Jafri MZ
    Nanoscale Res Lett, 2014;9(1):175.
    PMID: 24721986 DOI: 10.1186/1556-276X-9-175
    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  13. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ
    Bioresour Technol, 2010 Jun;101(12):4584-92.
    PMID: 20153633 DOI: 10.1016/j.biortech.2010.01.059
    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  14. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Foo KL, Balakrishnan SR, et al.
    Sci Rep, 2015 Jul 16;5:12231.
    PMID: 26178973 DOI: 10.1038/srep12231
    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  15. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  16. Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N
    Phys Chem Chem Phys, 2019 Sep 11;21(35):19126-19146.
    PMID: 31432825 DOI: 10.1039/c9cp01664c
    In this study, nano- and microsized zinc oxide (ZnO) materials were doped with different manganese (Mn) contents (1-5 mol%) via a simple sol-gel method. The structural, morphological, optical and chemical environments of the materials were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). XRD results revealed that all synthesised materials were pure and single phased with a hexagonal wurtzite structure of ZnO. However, at a low annealing temperature, a nanorod-like shape can be obtained for all Zn(1-x)MnxO materials. In addition, EDX spectra confirmed the presence of Mn in the ZnO lattice and the atomic percentage was nearly equal to the calculated stoichiometry. UV-vis spectroscopy further revealed that materials in nano size exhibited band gap widening with an increase of the Mn content in the ZnO lattice. In contrast, micron state materials exhibited band gap narrowing with increasing Mn content up to 3% and then begin to widen when Mn > 3%. This is because the band gaps of these materials are affected by the dimensions of the crystals and the Mn content in the materials. Furthermore, XPS results revealed the existence of multiple states of Mn in all synthesised materials. By combining the information obtained from UV-vis and the XPS valence band, shifting in the valence band maximum (VBM) and conduction band minimum (CBM) was observed. Based on XPS results, the calculation of density functional theory studies revealed that the presence of Mn2+, Mn3+, and Mn4+ ions in the materials influences the band gap changes. It was also revealed that the nanosized Zn0.99Mn0.01O exhibited a higher photocatalytic activity than the other samples for degrading methylene blue (MB) dyes, owing to its smallest crystallite size.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  17. Akrima Abu Bakar, Muhammad Khairool Fahmy Mohd Ali, Norhazilan Md. Noor, Nordin Yahaya, Mardhiah Ismail, Ahmad Safuan A. Rashid
    Sains Malaysiana, 2017;46:1323-1331.
    Baram Delta Operation had been producing oil and gas since 1960's and serious pipelines failure was reported in the year of 2005. The final investigation has concluded that one of the species of bacteria that has been identified to cause microbiologically influenced corrosion, specifically known as sulfate reducing bacteria (SRB) was found to be one of the potential contributing factors to the incidents. This work investigates the potential use of ultraviolet (UV) radiation to inhibit the SRB consortium that was cultivated from the crude oil in one of the main trunk lines at Baram Delta Operation, Sarawak, Malaysia. The impact of UV exposure to bio-corrosion conditions on carbon steel coupon in certain samples for 28 days was discussed in this study. The samples were exposed to UV radiation based on variations of parameters, namely: time of UV exposure; and power of UV lamp. The significant changes on the amount of turbidity reading and metal loss of the steel coupon were recorded before and after experiment. The results showed that SRB growth has reduced rapidly for almost 90% after the UV exposure for both parameters as compared to the abiotic samples. Metal loss values were also decreased in certain exposure condition. Additionally, field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS) was performed to observe the biofilm layer formed on the metal surface after its exposure to SRB. The evidence suggested that the efficiency of UV treatment against SRB growth could be influenced by the particular factors studied
    Matched MeSH terms: Spectrometry, X-Ray Emission
  18. Jun LY, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, et al.
    Sci Rep, 2019 02 18;9(1):2215.
    PMID: 30778111 DOI: 10.1038/s41598-019-39621-4
    Surface modified Multi-walled carbon nanotubes (MWCNTs) Buckypaper/Polyvinyl Alcohol (BP/PVA) composite membrane was synthesized and utilized as support material for immobilization of Jicama peroxidase (JP). JP was successfully immobilized on the BP/PVA membrane via covalent bonding by using glutaraldehyde. The immobilization efficiency was optimized using response surface methodology (RSM) with the face-centered central composite design (FCCCD) model. The optimum enzyme immobilization efficiency was achieved at pH 6, with initial enzyme loading of 0.13 U/mL and immobilization time of 130 min. The results of BP/PVA membrane showed excellent performance in immobilization of JP with high enzyme loading of 217 mg/g and immobilization efficiency of 81.74%. The immobilized system exhibited significantly improved operational stability under various parameters, such as pH, temperature, thermal and storage stabilities when compared with free enzyme. The effective binding of peroxidase on the surface of the BP/PVA membrane was evaluated and confirmed by Field emission scanning electron microscopy (FESEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). This work reports the characterization results and performances of the surface modified BP/PVA membrane for peroxidase immobilization. The superior properties of JP-immobilized BP/PVA membrane make it promising new-generation nanomaterials for industrial applications.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  19. Lee ZY, Hawari HFB, Djaswadi GWB, Kamarudin K
    Materials (Basel), 2021 Jan 22;14(3).
    PMID: 33498992 DOI: 10.3390/ma14030522
    A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor's prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.
    Matched MeSH terms: Spectrometry, X-Ray Emission
  20. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
    Matched MeSH terms: Spectrometry, X-Ray Emission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links