Displaying publications 21 - 40 of 363 in total

Abstract:
Sort:
  1. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Talanta, 2017 Oct 01;173:51-59.
    PMID: 28602191 DOI: 10.1016/j.talanta.2017.05.064
    Estuary sediments are one of the important components of coastal ecosystems and have been regarded as a sink for various types of organic pollutants. Organic pollutants such as endocrine disrupting compounds (EDCs) which have been associated with various environmental and human health effects were detected in the estuary sediment at trace level. Considering various interferences that may exist in the estuarine sediment, a sensitive and selective method, capable of detecting multiclass EDC pollutants at the trace levels, needs to be developed and optimized to be applied for environmental analysis. A combination of Soxhlet extraction followed by offline solid phase extraction (SPE) cleaned up with detection based on LC triple quadrupole MS was optimized and validated in this study. The targeted compounds consisted of ten multiclass EDCs, namely, diclofenac, primidone, bisphenol A, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), progesterone, and testosterone. The method showed high extraction efficiency with percentage of recovery from 78% to 108% and excellent sensitivity with detection limit between 0.02ngg-1 and 0.81ngg-1. Excellent linearity from 0.991 to 0.999 was achieved for the developed compounds and the relative standard deviation was less than 18%, an indication of good precision analysis. Evaluation of the matrix effects showed ionization suppression for all the developed compounds. Verification of the method was carried out by analyzing the estuarine sediment collected from Langat River. The analyzed estuarine sediments showed a trace concentration of diclofenac, bisphenol A, progesterone, testosterone, primidone, and E1. However, E2, EE2, 4-OP, and 4-NP were below the method's detection limit. Diclofenac exhibited the highest concentration at 2.67ngg-1 followed by bisphenol A (1.78ngg-1) while E1 showed the lowest concentration at 0.07ngg-1.
    Matched MeSH terms: Tropical Climate*
  2. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ
    Environ Sci Pollut Res Int, 2014;21(11):7047-64.
    PMID: 24532282 DOI: 10.1007/s11356-014-2598-0
    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan.
    Matched MeSH terms: Tropical Climate
  3. Ghaffarianhoseini A, Berardi U, Ghaffarianhoseini A, Al-Obaidi K
    Sci Total Environ, 2019 Jan 26.
    PMID: 30857724 DOI: 10.1016/j.scitotenv.2019.01.284
    The rapid urban expansion in East-Asian cities has increased the need for comfortable public spaces. This study presents field measurements and parametric simulations to evaluate the microclimatic characteristics in a university campus in the tropical climate of Kuala Lumpur, Malaysia. The study attempts to identify the thermally uncomfortable areas and their physical and design characteristics while debating on the circumstances of enhancing the outdoor comfort conditions for the campus users. Simulations in Envi-met and IES-VE are used to investigate the current outdoor thermal conditions, using classic thermal metric indices. Findings show high levels of thermal discomfort in most of the studied spaces. As a result, suggestions to improve the design quality of outdoor areas optimizing their thermal comfort conditions are proposed. The study concludes that effective re-design of outdoor spaces in the tropics, through adequate attention to the significant impacts of shading and vegetation, can result in achieving outdoor spaces with high frequency of use and improved comfort level.
    Matched MeSH terms: Tropical Climate
  4. Psomas E, Holdsworth S, Eggleton P
    J. Morphol., 2018 07;279(7):981-996.
    PMID: 29676002 DOI: 10.1002/jmor.20828
    Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants.
    Matched MeSH terms: Tropical Climate*
  5. Kaufmann E, Maschwitz U
    Naturwissenschaften, 2006 May;93(5):216-27.
    PMID: 16544124
    Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73-89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125-133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to "classical" AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.
    Matched MeSH terms: Tropical Climate
  6. Ahmed OH, Ahmad HM, Musa HM, Rahim AA, Rastan SO
    ScientificWorldJournal, 2005 Jan 21;5:42-9.
    PMID: 15674449
    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.
    Matched MeSH terms: Tropical Climate
  7. Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, Lee SL, et al.
    PLoS One, 2018;13(3):e0193501.
    PMID: 29547644 DOI: 10.1371/journal.pone.0193501
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.
    Matched MeSH terms: Tropical Climate*
  8. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
    Matched MeSH terms: Tropical Climate
  9. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
    Matched MeSH terms: Tropical Climate*
  10. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, et al.
    Environ Sci Pollut Res Int, 2015 Jan;22(2):1512-33.
    PMID: 25163562 DOI: 10.1007/s11356-014-3444-0
    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (<90), low (90-110), moderate (110-130), and high (>130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and manager with understanding needed to ensure sustainability of the island's aquifer.
    Matched MeSH terms: Tropical Climate
  11. Abushammala MF, Basri NE, Elfithri R
    Environ Monit Assess, 2013 Dec;185(12):9967-78.
    PMID: 23797636
    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.
    Matched MeSH terms: Tropical Climate
  12. Carta MG, Scano A, Lindert J, Bonanno S, Rinaldi L, Fais S, et al.
    Eur Rev Med Pharmacol Sci, 2020 08;24(15):8226-8231.
    PMID: 32767354 DOI: 10.26355/eurrev_202008_22512
    OBJECTIVE: To explore whether the climate has played a role in the COVID-19 outbreak, we compared virus lethality in countries closer to the Equator with others. Lethality in European territories and in territories of some nations with a non-temperate climate was also compared.

    MATERIALS AND METHODS: Lethality was calculated as the rate of deaths in a determinate moment from the outbreak of the pandemic out of the total of identified positives for COVID-19 in a given area/nation, based on the COVID-John Hopkins University website. Lethality of countries located within the 5th parallels North/South on 6 April and 6 May 2020, was compared with that of all the other countries. Lethality in the European areas of The Netherlands, France and the United Kingdom was also compared to the territories of the same nations in areas with a non-temperate climate.

    RESULTS: A lower lethality rate of COVID-19 was found in Equatorial countries both on April 6 (OR=0.72 CI 95% 0.66-0.80) and on May 6 (OR=0.48, CI 95% 0.47-0.51), with a strengthening over time of the protective effect. A trend of higher risk in European vs. non-temperate areas was found on April 6, but a clear difference was evident one month later: France (OR=0.13, CI 95% 0.10-0.18), The Netherlands (OR=0.5, CI 95% 0.3-0.9) and the UK (OR=0.2, CI 95% 0.01-0.51). This result does not seem to be totally related to the differences in age distribution of different sites.

    CONCLUSIONS: The study does not seem to exclude that the lethality of COVID-19 may be climate sensitive. Future studies will have to confirm these clues, due to potential confounding factors, such as pollution, population age, and exposure to malaria.

    Matched MeSH terms: Tropical Climate
  13. Li TC, Ambu S, Mohandas K, Wah MJ, Sulaiman LH, Murgaiyah M
    Trop Biomed, 2014 Sep;31(3):540-56.
    PMID: 25382482 MyJurnal
    Airborne bacteria are significant biotic constituents of bioaerosol. Bacteria at high concentrations in the air can compromise indoor air quality (IAQ) and result in many diseases. In tropical environments like Malaysia that extensively utilize air-conditioning systems, this is particularly significant due to continuous recirculation of indoor air and the potential implications for human health. Currently, there is a lack of knowledge regarding the impact of airborne bacteria on IAQ in Malaysia. This study was prompted by a need for reliable baseline data on airborne bacteria in the indoor environment of tropical equatorial Malaysia, that may be used as a reference for further investigations on the potential role played by airborne bacteria as an agent of disease in this region. It was further necessitated due to the threat of bioterrorism with the potentiality of release of exotic pathogenic microorganisms into indoor or outdoor air. Before scientists can detect the latter, a gauge of the common microorganisms in indoor (as well as outdoor) air needs to be ascertained, hence the expediency of this study. Bacterial counts from the broad-based and targeted study were generally in the order of 10(2) colony-forming units (CFU) per m(3) of air. The most prevalent airborne bacteria found in the broad-based study that encompassed all five levels of the building were Gram-positive cocci (67.73%), followed by Gram-positive rods (24.26%) and Gram-negative rods (7.10%). Gram-negative cocci were rarely detected (0.71%). Amongst the genera identified, Kytococcus sp., Micrococcus sp., Staphylococcus sp., Leifsonia sp., Bacillus sp. and Corynebacterium sp. predominated in indoor air. The most dominant bacterial species were Kytococcus sedentarius, Staphylococcus epidermidis and Micrococcus luteus. The opportunistic and nosocomial pathogen, Stenotrophomonas maltophilia was also discovered at a high percentage in the cafeteria. The bacteria isolated in this study have been increasingly documented to cause opportunistic infections in immuno-compromised patients, sometimes with fatal outcomes. Furthermore, some of them are becoming increasingly resistant to antibiotics. Hence, we propose that indoor reservoirs of these bacteria and their associated clinical and more subtle health effects, if any, be investigated further.
    Matched MeSH terms: Tropical Climate
  14. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Tropical Climate
  15. Snaddon JL, Turner EC, Fayle TM, Khen CV, Eggleton P, Foster WA
    Biol Lett, 2012 Jun 23;8(3):397-400.
    PMID: 22188674 DOI: 10.1098/rsbl.2011.1115
    The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.
    Matched MeSH terms: Tropical Climate
  16. Larsen M
    J Anim Sci, 2006 Apr;84 Suppl:E133-9.
    PMID: 16582084
    In a world in which sheep producers are facing increasing problems due to the rapid spread of anthelmintic resistance, the battle against gastrointestinal parasitic nematodes is a difficult one. One of the potential new tools for integrated control strategies is biological control by means of the nematode-destroying microfungus Duddingtonia flagrans. This fungus forms sticky traps that catch developing larval stages of parasitic nematodes in the fecal environment. When resting spores (chlamydospores) of this fungus are fed daily to grazing animals for a period of time, the pasture infectivity and thus, the worm burden of grazing animals are lowered, especially in young lambs. Research has been conducted throughout the world covering many different climates and management systems. An Australian parasite model showed that if the fungus performs efficiently (> or =90% reduction in worm burden) for 2 or 3 mo, it should contribute significantly to a reduction in the number of dead lambs otherwise occurring when managed only by anthelmintic treatment and grazing management. Feeding or field trials have clearly demonstrated that dosing with a few hundred thousand spores per kilogram of live BW not only reduced the number of infective larvae but also increased the BW of the lambs compared with controls not given fungus. Initial Australian work with feeding spores by means of a block formulation or a slow-release device has shown some promise, but further work is needed to fully develop these delivery systems. In tropical Malaysia, small paddock trials and field studies resulted in significant improvements, in terms of lower worm burdens and increased live BW, when feeding half a million spores daily to grazing lambs. Additional benefits have been observed when the fungus is employed in combination with a fast rotational grazing system. Research has also demonstrated that spores can be delivered in slightly moist feed block material, but only if such blocks are consumed rapidly, because of their very short shelf life. In the northern, temperate Danish climate it has been demonstrated that daily feeding of half a million spores per kilogram of live BW can lead to significant production benefits, with increased live BW gain in fungus-exposed animals. Biological control of parasitic nematodes in sheep seems to hold promise for the future, but to be able to assist producers, the optimal delivery system needs to be refined and further developed. In addition, more work will be needed to define the best use of this technology in different geographic regions.
    Matched MeSH terms: Tropical Climate
  17. Maqbool A, Paul BT, Jesse FFA, Teik Chung EL, Mohd Lila MA, Haron AW
    Microb Pathog, 2021 Aug;157:105001.
    PMID: 34048891 DOI: 10.1016/j.micpath.2021.105001
    BACKGROUND: We investigated the biomarkers, immune responses and cellular changes in vaccinated and non-vaccinated goats experimentally challenged with M. haemolytica serotype A2 under rainy and hot tropical conditions. A total of twenty-four clinically healthy, non-pregnant, female goats randomly allocated to 2 groups of 12 goats each were used for the study. The 12 goats in each season were subdivided into three groups (n = 4), which served as the control (G-NEG), non-vaccinated (G-POS), and vaccinated (G-VACC). In week-1, the G-VACC received 2 mL of alum-precipitated pasteurellosis vaccine while G-POS and G-NEG received 2 ml of sterile PBS. In week 2, the G-POS and G-VACC received 1 mL intranasal spray containing 105 CFU of M. haemolytica serotype A2. Inoculation was followed by daily monitoring and weekly bleeding for eight weeks to collect data and serum for biomarkers and immune responses using commercial ELISA test kits. The goats were humanely euthanised at the end of the experiments to collect lungs and the submandibular lymph nodes tissue samples for gross and histopathological examinations.

    RESULTS: Regardless of the season, we have observed a significant (p 

    Matched MeSH terms: Tropical Climate
  18. CHIN J
    Tubercle, 1964 Jun;45:114-24.
    PMID: 14161910
    Matched MeSH terms: Tropical Climate*
  19. Razali SM, Marin A, Nuruddin AA, Shafri HZ, Hamid HA
    Sensors (Basel), 2014 May 07;14(5):8259-82.
    PMID: 24811079 DOI: 10.3390/s140508259
    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.
    Matched MeSH terms: Tropical Climate
  20. Katayama A, Kume T, Komatsu H, Saitoh TM, Ohashi M, Nakagawa M, et al.
    J Plant Res, 2013 Jul;126(4):505-15.
    PMID: 23283581 DOI: 10.1007/s10265-012-0544-0
    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links