The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.
Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
The current world condition is dire due to epidemics and pandemics as a result of novel viruses, such as influenza and the coronavirus, causing acute respiratory syndrome. To overcome these critical situations, the current research seeks to generate a common surveillance system with the assistance of a controlled Internet of Things operated under a Gaussian noise channel. To create the model system, a study with an analysis of H1N1 influenza virus determination on an interdigitated electrode (IDE) sensor was validated by current-volt measurements. The preliminary data were generated using hemagglutinin as the target against gold-conjugated aptamer/antibody as the probe, with the transmission pattern showing consistency with the Gaussian noise channel algorithm. A good fit with the algorithmic values was found, displaying a similar pattern to that output from the IDE, indicating reliability. This study can be a model for the surveillance of varied pathogens, including the emergence and reemergence of novel strains.
Biomedical research advances over the past two decades in bioseparation science and engineering have led to the development of new adsorbent systems called monoliths, mostly as stationary supports for liquid chromatography (LC) applications. They are acknowledged to offer better mass transfer hydrodynamics than their particulate counterparts. Also, their architectural and morphological traits can be tailored in situ to meet the hydrodynamic size of molecules which include proteins, pDNA, cells and viral targets. This has enabled their development for a plethora of enhanced bioscreening applications including biosensing, biomolecular purification, concentration and separation, achieved through the introduction of specific functional moieties or ligands (such as triethylamine, N,N-dimethyl-N-dodecylamine, antibodies, enzymes and aptamers) into the molecular architecture of monoliths. Notwithstanding, the application of monoliths presents major material and bioprocess challenges. The relationship between in-process polymerisation characteristics and the physicochemical properties of monolith is critical to optimise chromatographic performance. There is also a need to develop theoretical models for non-invasive analyses and predictions. This review article therefore discusses in-process analytical conditions, functionalisation chemistries and ligands relevant to establish the characteristics of monoliths in order to facilitate a wide range of enhanced bioscreening applications. It gives emphasis to the development of functional polymethacrylate monoliths for microfluidic and preparative scale bio-applications.
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I-IV. It reveals low similarity between XZ0934 and genotype I-IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic.
Coat protein genes CP1, CP2 and CP3 of an isolate (MaP1) of rice tungro spherical virus (RTSV) from Malaysia were isolated, cloned and sequenced. Comparative analysis indicated that MaP1 isolate is closely related to the Philippine isolate.
The results of this study indicate that the important viral agents associated with lower respiratory tract infections in young children are respiratory syncytial virus, rhinovirus, and parainfluenza virus, particularly in those under 2 years of age. This is in close agreement with studies done in temperate climates. Influenza A virus is seasonal and plays an important role in upper respiratory tract infections in older children.
Study site: Inpatients and outpatients, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
Precipitating antibodies to an insect pathogenic RNA virus of Darna trima from East Malaysia have been found in a small percentage of human sera from several different groups of persons in West Malaysia and the United Kingdom. No associated illness was identified. The results suggest that an antigenically related virus or viruses are present in the environment that may be associated with symptomless or inapparent infections in man.
Saliva collection is non-invasive and less stressful when compared with blood collection. Extensive studies on saliva has been carried out and the use of saliva as a biological sample in clinical diagnosis and for monitoring hormones, drugs and pollutants and viruses has been recommended. The complexities associated with saliva such as proper collection device and strict standardisation of a number of factors which include time of collection, types of saliva and storage made it less favourable to blood.
BACKGROUND: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia.
OBJECTIVE: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular -Malaysia.
METHOD AND RESULTS: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively.
CONCLUSION: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.
Matched MeSH terms: DNA Viruses/classification*; DNA Viruses/genetics*; DNA Viruses/isolation & purification
Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.
Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
A comprehensive understanding of the geographic distribution of the tick-borne encephalitis virus (TBEV) complex is necessary due to increasing transboundary movement and cross-reactivity of serological tests. This review was conducted to identify the geographic distribution of the TBEV complex, including TBE virus, Alkhurma haemorrhagic fever virus, Kyasanur forest disease virus, louping-ill virus, Omsk haemorrhagic fever virus, and Powassan virus. Published reports were identified using PubMed, EMBASE, and the Cochrane library. In addition to TBEV complex case-related studies, seroprevalence studies were also retrieved to assess the risk of TBEV complex infection. Among 1406 search results, 314 articles met the inclusion criteria. The following countries, which are known to TBEV epidemic region, had conducted national surveillance studies: Austria, China, Czech, Denmark, Estonia, Finland, Germany, Hungary, Italy, Latvia, Norway, Poland, Romania, Russia, Switzerland, Sweden, Slovenia, and Slovakia. There were also studies/reports on human TBEV infection from Belarus, Bulgaria, Croatia, France, Japan, Kyrgyzstan, Netherland, and Turkey. Seroprevalence studies were found in some areas far from the TBEV belt, specifically Malaysia, Comoros, Djibouti, and Kenya. Kyasanur forest disease virus was reported in southwestern India and Yunnan of China, the Powassan virus in the United States, Canada, and east Siberia, Alkhurma haemorrhagic fever virus in Saudi Arabia and east Egypt, and Louping-ill virus in the United Kingdom, Ireland, and east Siberia. In some areas, the distribution of the TBEV complex overlaps with that of other viruses, and caution is recommended during serologic diagnosis. The geographic distribution of the TBEV complex appears to be wide and overlap of the TBE virus complex with other viruses was observed in some areas. Knowledge of the geographical distribution of the TBEV complex could help avoid cross-reactivity during the serologic diagnosis of these viruses. Surveillance studies can implement effective control measures according to the distribution pattern of these viruses.
Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.
Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses.
Virus isolation and accurate characterization plays a crucial role in the rapid identification of the causative agents of infectious disease outbreaks especially if the causative viruses are novel where no pre-existing diagnostic reagents would be available. A new cell culture tube, named Jui Meng (JM) Cell Culture Tube, was developed to reduce the cost and improve the efficiency and biosafety of work pertaining to virus isolation. The design of the tube is based heavily on the principle of practicability, functionality, biosafety and long-term cost saving for diagnostic laboratory work in virus isolation. It is designed to culture an initial inoculum of one milliliter of culture medium containing 1 x 10(4) to 1 x 10(5) cells/ml.