METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.
RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.
CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.
OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.
RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.
CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.