Displaying publications 401 - 420 of 1467 in total

Abstract:
Sort:
  1. Melo JO, Padilha MAO, Barbosa RTA, Alonso WJ, Vittor AY, Laporta GZ
    Trop Biomed, 2020 Jun;37(2):513-535.
    PMID: 33235398
    After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.
    Matched MeSH terms: Malaria/parasitology; Malaria, Falciparum/parasitology; Malaria, Vivax/parasitology
  2. Uni S, Fukuda M, Uga S, Agatsuma T, Nakatani J, Suzuki K, et al.
    Parasitol Int, 2021 Aug;83:102313.
    PMID: 33662527 DOI: 10.1016/j.parint.2021.102313
    Reports of zoonotic infections with Onchocerca japonica (Nematoda: Filarioidea), which parasitizes the Japanese wild boar, Sus scrofa leucomystax, have recently increased in Japan. To predict the occurrence of infection in humans, it is necessary to determine the prevalence of O. japonica infection in the natural host animals. We investigated the presence of adult worms in the footpads, and of microfilariae in skin snips, taken from the host animals, between 2000 and 2018. Onchocerca japonica was found in 165 of 223 (74%) Japanese wild boars in Honshu and Kyushu. Among the nine regions studied, the highest prevalence of O. japonica infection was found in Oita, Kyushu, where 47 of 52 (90.4%) animals were infected. The ears were the predilection sites for O. japonica microfilariae. Adult worms of O. japonica were found more frequently in the hindlimbs than in the forelimbs of the host animals. Onchocerca takaokai was found in 14 of 52 (26.9%) Japanese wild boars in Oita. In Kakeroma Island among the Nansei Islands, both O. japonica and O. takaokai were isolated from the Ryukyu wild boar, S. s. riukiuanus. These observations could help predict future occurrences of human zoonotic onchocercosis in Japan.
    Matched MeSH terms: Onchocerciasis/parasitology; Swine Diseases/parasitology; Zoonoses/parasitology
  3. Yousef Kalafi E, Tan WB, Town C, Dhillon SK
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):511.
    PMID: 28155722 DOI: 10.1186/s12859-016-1376-z
    BACKGROUND: Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts' (male and female copulatory organs) morphological characters and soft anatomical parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012), (ISDA; 457-462, 2011), (J Zoolog Syst Evol Res 52(2): 95-99. 2013;). In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods.

    RESULT: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%.

    CONCLUSIONS: The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.

    Matched MeSH terms: Fishes/parasitology*; Gills/parasitology; Skin/parasitology
  4. Dissanaike AS, Ramalingam S, Fong A, Pathmayokan S, Thomas V, Kan SP
    Am J Trop Med Hyg, 1977 Nov;26(6 Pt 1):1143-7.
    PMID: 596511
    An active worm was seen in the right eye of a 62-year-old man in Malaysia. The worm was behind the lens and attached at one end to some vitreous fibers. It was tentatively identified as an immature Dirofilaria immitis. There appear to be only five previous authentic reports of filariae in the vitreous.
    Matched MeSH terms: Dirofilariasis/parasitology*; Eye Diseases/parasitology; Vitreous Body/parasitology*
  5. Ong HC
    J Trop Med Hyg, 1974 Aug;77(8):187-9.
    PMID: 4422640
    Matched MeSH terms: Fallopian Tubes/parasitology*; Genital Diseases, Female/parasitology; Parasitic Diseases/parasitology*
  6. Che Rahim MJ, Mohammad N, Besari AM, Wan Ghazali WS
    BMJ Case Rep, 2017 Feb 20;2017.
    PMID: 28219910 DOI: 10.1136/bcr-2016-218480
    We report a case of severe Plasmodium knowlesi and dengue coinfection in a previously healthy 59-year-old Malay man who presented with worsening shortness of breath, high-grade fever with chills and rigors, dry cough, myalgia, arthralgia, chest discomfort and poor appetite of 1 week duration. There was a history mosquito fogging around his neighbourhood in his hometown. Further history revealed that he went to a forest in Jeli (northern part of Kelantan) 3 weeks prior to the event. Initially he was treated as severe dengue with plasma leakage complicated with type 1 respiratory failure as evidenced by positive serum NS1-antigen and thrombocytopenia. Blood for malarial parasite (BFMP) was sent for test as there was suspicion of malaria due to persistent thrombocytopenia despite recovering from dengue infection and the presence of a risk factor. The test revealed high count of malaria parasite. Confirmatory PCR identified the parasite to be Plasmodium knowlesi Intravenous artesunate was administered to the patient immediately after acquiring the BFMP result. Severe malaria was complicated with acute kidney injury and septicaemic shock. Fortunately the patient made full recovery and was discharged from the ward after 2 weeks of hospitalisation.
    Matched MeSH terms: Malaria/parasitology; Shock, Septic/parasitology; Acute Kidney Injury/parasitology
  7. Soo OYM
    Parasitol Int, 2019 Feb;68(1):31-39.
    PMID: 30244155 DOI: 10.1016/j.parint.2018.09.003
    Haliotrema susanae sp. nov. is described from the gills of the pinecone soldierfish, Myripristis murdjan off Langkawi Island, Malaysia. This species is differentiated from other Haliotrema species especially those from holocentrids in having a male copulatory organ with bract-like extensions at the initial of the copulatory tube, grooved dorsal anchors and ventral anchors with longer shafts. The maximum likelihood (ML) analysis based on partial 28S rDNA sequences of H. susanae sp. nov. and 47 closely related monogeneans showed that H. susanae sp. nov. is recovered within a monophyletic clade consisting of only species from the genus Haliotrema. It is also observed that H. susanae sp. nov. forms a clade with H. cromileptis and H. epinepheli which coincides with a similar grouping by Young based on solely morphological characteristics. The morphological and molecular results validate the identity of H. susanae sp. nov. as belonging to the genus Haliotrema.
    Matched MeSH terms: Fish Diseases/parasitology; Fishes/parasitology*; Gills/parasitology
  8. Wang LC
    Epidemiol Infect, 1998 Feb;120(1):81-6.
    PMID: 9528821
    Parasitic infections have been reported to be relatively common among the Southeast Asian labourers in Taiwan. This study, conducted in 1992-6, was designed to determine the temporal changes of the prevalence. Faecal specimens were examined by the formalin-ethyl acetate sedimentation technique and blood samples screened using the quantitative buffy coat technique and confirmed by Giemsa stained blood smear. The overall prevalence of intestinal parasitic infections was 10.3%. The annual prevalence decreased from 33.3% in 1992-3 to 4.6% in 1995-6. The Thai (12.0%) and Indonesian (11.1%) had a higher prevalence than the Malaysian (6.7%) and Filipinos (5.9%). Opisthorchis viverrini was the most important parasite in the Thai and Trichuris trichiura in the remaining groups. Moreover, no blood parasites were found in the labourers. The dramatic temporal decline in the intestinal parasitic infections suggests that limiting the entry of infected persons, periodic follow-ups, and immediate treatment of sporadic cases are necessary in preventing transmission of non-indigenous parasites through large population change.
    Matched MeSH terms: Feces/parasitology; Intestinal Diseases, Parasitic/parasitology; Occupational Diseases/parasitology
  9. Ow-Yang CK
    Family Practitioner, 1982;5:45-47.
    Matched MeSH terms: Parasitology
  10. Tee HS, Lee CY
    J Econ Entomol, 2017 12 05;110(6):2504-2511.
    PMID: 29029091 DOI: 10.1093/jee/tox241
    Many female parasitoid wasps optimize host selection to balance the benefits of high-quality hosts and the costs of predator- or hyperparasitoid-induced mortality risks to maximize their fitness. Cannibalism exists in many insect species and affects survival of parasitoid larvae developing in or on parasitized hosts. However, little is known about how parasitoid wasps resolve the fitness consequence of host cannibalism-induced mortality risk during host selection. We examined the effect of oothecal age on cannibalism in the American cockroach Periplaneta americana (L.) (Dictyoptera: Blattidae) and its effect on host age selection and fitness of its oothecal parasitoid Evania appendigaster (L.) (Hymenoptera: Evaniidae). P. americana differentially cannibalized 1-d-old (30‒60%) versus 10- to 40-d-old oothecae (<9%). However, parasitoid females did not avoid but still preferred to parasitize 1-d-old (45%) over 10- to 40-d-old oothecae (1.6‒20%). The parasitism rate was greater and the handling time was shorter on 1-d-old compared to older oothecae. For parasitoid progeny emerging from different-aged oothecae, regression analysis showed that development time increased and body size (measured as hind tibia length) and longevity decreased with oothecal age. These results demonstrate that reduced parasitoid progeny survival due to host cannibalism did not change the parasitoid's oviposition preference for newly laid oothecae, and that E. appendigaster females traded progeny survival for fitness gains for themselves and their progeny.
    Matched MeSH terms: Nymph/parasitology; Ovum/parasitology; Periplaneta/parasitology*
  11. Kamaruddin SK, Mat Yusof A, Mohammad M
    Trop Biomed, 2020 Mar 01;37(1):127-141.
    PMID: 33612724
    Blastocystis sp. is a common enteric protozoan parasite found in humans and various type of animal worldwide. Recently, genotypic distribution of Blastocystis sp. was revealed in insects, rodents, avian and mammals, which exposed its potential of transmiting the infections to human. However, very little information on current level of Blastocystis sp. infection were reported in cattle from Malaysia. Herein, a total of 120 stool samples of cattles were collected. While the potential risk of infection such as age, gender, body score, diarrheic condition of the cattle were noted, the management of the farms was also recorded. All stool sample were cultured, but 80 samples were selected for PCR sequencing analysis. The cultivation and microscopic examination revealed only 25% of the cattle (30/120) were infected with Blastocystis sp.. But, 43.8% of the cattle (35/80) were found positive upon PCR sequencing. The study also found that age, body score condition, diarrheic condition and certain farm were associated with the infection (p<0.05). Six subtypes (STs) that were discovered during the study were ST10 (21.3%;17/35), ST5 (8.8%;7/35), ST3 (7.5%;6/35), ST1 (2.5%;2/35), ST4 (2.5%;2/35) and ST14 (1.3%;1/35). Thus, moderate infections of Blastocystis sp. and variants in the genotypic distributions of the cattle suggest its potential for zoonotic transmission. Therefore, this findings could be helpful for further understanding the parasite, which assist studies of its pathogenicity.
    Matched MeSH terms: Cattle/parasitology*; Cattle Diseases/parasitology*; Blastocystis Infections/parasitology
  12. Xia NB, Lu Y, Zhao PF, Wang CF, Li YY, Tan L, et al.
    Trop Biomed, 2020 Jun 01;37(2):489-498.
    PMID: 33612818
    Toxoplasma gondii, a ubiquitous pathogen that infects nearly all warm-blooded animals and humans, can cause severe complications to the infected people and animals as well as serious economic losses and social problems. Here, one local strain (TgPIG-WH1) was isolated from an aborted pig fetus, and the genotype of this strain was identified as ToxoDB #3 by the PCR RFLP typing method using 10 molecular markers (SAG1, SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). A comparison of the virulence of this isolate with other strains in both mice and piglets showed that TgPIG-WH1 was less virulent than type 1 strain RH and type 2 strain ME49 in mice, and caused similar symptoms to those of ME49 such as fever in piglets. Additionally, in piglet infection with both strains, the TgPIG-WH1 caused a higher IgG response and more severe pathological damages than ME49. Furthermore, TgPIG-WH1 caused one death in the 5 infected piglets, whereas ME49 did not, suggesting the higher virulence of TgPIG-WH1 than ME49 during piglet infection. Experimental infections indicate that the virulence of TgPIG-WH1 relative to ME49 is weaker in mice, but higher in pigs. This is probably the first report regarding a ToxoDB #3 strain from pigs in Hubei, China. These data will facilitate the understanding of genetic diversity of Toxoplasma strains in China as well as the prevention and control of porcine toxoplasmosis in the local region.
    Matched MeSH terms: Swine Diseases/parasitology*; Toxoplasmosis, Animal/parasitology*; Sus scrofa/parasitology*
  13. Kittiwattanawong K, Ponlawat A, Boonrotpong S, Nanakorn N, Kongchouy N, Moonmake S, et al.
    Trop Biomed, 2020 Jun 01;37(2):397-408.
    PMID: 33612809
    The Anopheles dirus mosquito is a primary malaria vector that transmits many species of Plasmodium parasites in Thailand and is widely spread across its geographic area. In the current study, the levels of expression of the suppressor of cytokine signaling (SOCS) gene in An. dirus mosquitoes infected with P. vivax were examined. The level of the gene's expression determined by mRNA extraction in An. dirus females (n=2,400) was studied at different times (0, 12, 24, 36, and 48 h after feeding), with different types of blood feeding (non-feeding, parasite-negative blood feeding, parasite-positive blood feeding) and in different parts of the body of mosquito samples (thorax and abdomen). The datasets were analyzed based on their relative expression ratio by the 2-ΔΔCT method and were tested for significant differences with ANOVA. The results showed that the An. dirus SOCS gene was stimulated in the abdomen 12 h and 24 h after blood feeding about three times more highly than in unfed females, with the difference being significant. At 24 h after P. vivax-infected blood feeding, the SOCS gene in the abdomen was expressed more highly than 24 h after parasite-negative blood feeding and expression was almost 36 times higher than in the control group who were not fed blood. However, in the thorax at all times after feeding and non-feeding, there was no expression of the SOCS gene. Therefore, the SOCS gene in An. dirus was most highly expressed 24 h post-feeding with a P. vivax-infected bloodmeal, which indicates that the SOCS gene in the major malaria vector in Thailand plays an important role in its immune system and its response to P. vivax infection.
    Matched MeSH terms: Anopheles/parasitology*; Insect Vectors/parasitology; Mosquito Vectors/parasitology
  14. Wakid MH, Toulah FH, Mahjoub HA, Alsulami MN, Hikal WM
    Trop Biomed, 2020 Dec 01;37(4):1008-1017.
    PMID: 33612753 DOI: 10.47665/tb.37.4.1008
    Giardiasis is the major water-borne diarrheal disease present worldwide caused by the common intestinal parasite, Giardia duodenalis. This work aims to investigate the effect of G. duodenalis infection pathogenicity in immunosuppressed animals through histopathological examination. A total of 45 BALB/c mice were divided into four groups; G1 (negative control), G2 (healthy animals exposed to Giardia); G3 (immunosuppressed animals exposed to Giardia), and G4 (non-exposed immunosuppressed animals). Our study revealed that G3 was the most affected group with an infection rate of 100%. The animals showed general weakness, soft stool, and high death rate with severe histopathological changes in the duodenum and mild degenerative changes in hepatic tissues. In G2, the maximal lesions in both duodenum and liver were on the 11th day. We spotted damage in the villi, edema in the central core, and submucosa, in addition to increased cellular infiltration with inflammation in lamina propria. The presence of the parasites within the villi and the lumen was clear. Most of the hepatocytes revealed hydropic and fatty changes, also dilated congested central veins and edema were observed. G3 changes were more intense than G2 with massive Giardia trophozoites between the intestinal villi, lumen, and extensive fatty liver degeneration. Immune suppression plays a significant role in the severity of injury with the Giardia parasites in duodenum and liver cells.
    Matched MeSH terms: Duodenum/parasitology; Intestinal Mucosa/parasitology; Liver/parasitology
  15. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P 

    Matched MeSH terms: Anopheles/parasitology*; Macaca fascicularis/parasitology*; Mosquito Vectors/parasitology*
  16. Bilung LM, Tahar AS, Yunos NE, Apun K, Lim YA, Nillian E, et al.
    Biomed Res Int, 2017;2017:4636420.
    PMID: 29234679 DOI: 10.1155/2017/4636420
    Cryptosporidiosis and cyclosporiasis are caused by waterborne coccidian protozoan parasites of the genera Cryptosporidium and Cyclospora, respectively. This study was conducted to detect Cryptosporidium and Cyclospora oocysts from environmental water abstracted by drinking water treatment plants and recreational activities in Sarawak, Malaysia. Water samples (12 each) were collected from Sungai Sarawak Kanan in Bau and Sungai Sarawak Kiri in Batu Kitang, respectively. In addition, 6 water samples each were collected from Ranchan Recreational Park and UNIMAS Lake at Universiti Malaysia Sarawak, Kota Samarahan, respectively. Water physicochemical parameters were also recorded. All samples were concentrated by the iron sulfate flocculation method followed by the sucrose floatation technique. Cryptosporidium and Cyclospora were detected by modified Ziehl-Neelsen technique. Correlation of the parasites distribution with water physicochemical parameters was analysed using bivariate Pearson correlation. Based on the 24 total samples of environmental water abstracted by drinking water treatment plants, all the samples (24/24; 100%) were positive with Cryptosporidium, and only 2 samples (2/24; 8.33%) were positive with Cyclospora. Based on the 12 total samples of water for recreational activities, 4 samples (4/12; 33%) were positive with Cryptosporidium, while 2 samples (2/12; 17%) were positive with Cyclospora. Cryptosporidium oocysts were negatively correlated with dissolved oxygen (DO).
    Matched MeSH terms: Cryptosporidiosis/parasitology; Feces/parasitology; Drinking Water/parasitology*
  17. Matsubayashi M, Matsuura Y, Nukata S, Daizi Y, Shibahara T, Teramoto I, et al.
    Parasitol Res, 2018 Jan;117(1):339-342.
    PMID: 29185030 DOI: 10.1007/s00436-017-5689-2
    Thus far, Entamoeba species have been classified based on morphology such as the number of nuclei in mature cysts and their hosts. Using recently developed molecular tools, ruminant Entamoeba spp. are currently classified into four species/genotypes: E. bovis and Entamoeba ribosomal lineages (RL) 1, 2, and 4. However, the distribution or pathogenicity of ruminant Entamoeba has not been well documented. In the present study, we examined a total of 25 fecal and seven environmental samples collected from six farms in Japan from 2016 to 2017 by the floatation method and PCR and sequencing analyses. Consequently, we detected Entamoeba cysts in 18 of 25 cattle samples and four of the seven environmental samples, including soil and drinking water, by microscopic examinations. In sequential examinations, Entamoeba-positive cattle were found to shed cysts without any clinical symptoms for more than 8 months. By PCR for molecular identification, isolates in ten cattle and one soil sample were successfully sequenced and formed a cluster of E. bovis, which was separated from those of other Entamoeba species/genotypes such as RL1-4 in phylogenetic analysis. To our knowledge, this is the first report about E. bovis in Japan, and our results may implicate that E. bovis is not pathogenic.
    Matched MeSH terms: Cattle Diseases/parasitology*; Entamoebiasis/parasitology; Feces/parasitology
  18. Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al.
    Parasit Vectors, 2016 Apr 28;9:242.
    PMID: 27125995 DOI: 10.1186/s13071-016-1527-0
    BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

    METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class.

    RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

    CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.

    Matched MeSH terms: Malaria/parasitology*; Monkey Diseases/parasitology*; Culicidae/parasitology
  19. Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, et al.
    PLoS Negl Trop Dis, 2021 Jan;15(1):e0009110.
    PMID: 33493205 DOI: 10.1371/journal.pntd.0009110
    Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
    Matched MeSH terms: Macaca/parasitology*; Macaca fascicularis/parasitology; Monkey Diseases/parasitology*
  20. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: Malaria/parasitology*; Parasitology/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links