MATERIALS & METHODS: A total of 13,098 Enterobacteriaceae isolates from various clinical samples were sent to our laboratory between January 2011 and December 2012. Of these, 90 demonstrated reduced susceptibility to at least one carbapenem and were included in this study. Only 88 isolates were successfully subcultured on blood agar (BA). Another 2 isolates failed to grow and were excluded. Of the 88, 2 isolates had the same identification number (repetitive isolates); therefore, 1 isolate was excluded from further analyses. Only 87 isolates were subjected to molecular detection of the blaOXA-48 and blaOXA-181 genes by polymerase chain reaction.
RESULTS: Eighty-seven non-repetitive isolates grew following subculture on BA. Of these, 9 (10.34%) were positive for OXA-48 (7 Klebsiella pneumoniae, 2 Escherichia coli). Each isolate originated from different patients. All patients had a history of treatment with at least one cephalosporin and/or carbapenem prior to the isolation of OXA-48 CRE. OXA-181 was detected in one (1.15%) out of the 87 isolates; CONCLUSIONS: The prevalence of OXA-48 and OXA-181 CRE among all Enterobacteriaceae isolates in our institution is 0.069% and 0.008%, respectively. Nevertheless, our findings suggest that OXA-48 and OXA-181 carbapenemases appear to be important and possibly under-recognised causes of carbapenem resistance in Malaysia.
Materials and Methods: This study utilized 10 LAB previously isolated from fermented buffalo milk (dadih), fermented fish (budu), and fermented cassava (tape) which have the ability to produce gamma-aminobutyric acid. The study commenced with the screening of LAB for certain properties, such as resistance to acid and bile salts, adhesion to mucosal surface, and antagonism against enteric pathogens (Escherichia coli, Salmonella Enteritidis, and Staphylococcus aureus). The promising isolates were identified through biochemical and gram staining methods.
Results: All isolates in this study were potential novel probiotics. They survived at a pH level of 2.5 for 3 h (55.27-98.18%) and 6 h (50.98-84.91%). Survival in bile at a concentration of 0.3% was 39.90-58.61% and the survival rate was 28.38-52.11% at a concentration of 0.5%. The inhibitory diameter ranged from 8.75 to 11.54 mm for E. coli, 7.02 to 13.42 mm for S. aureus, and 12.49 to 19.00 mm for S. Enteritidis. All the isolates (84.5-92%) exhibited the ability to adhere to mucosal surfaces. This study revealed that all the isolates were potential probiotics but N16 proved to be superior because it was viable at a pH level of 2 (84.91%) and it had a good survival rate in bile salts assay (55.07%). This isolate was identified as Lactobacillus spp., Gram-positive bacilli bacteria, and tested negative in both the catalase and oxidase tests.
Conclusion: All the isolates in this study may be used as probiotics, with isolate N16 (Lactobacillus spp.) as the most promising novel probiotic for poultry applications based on its ability to inhibit pathogenic bacteria.