METHODS: This is a multicentre descriptive case series of 21 patients comprising all MPS IVA patients in Malaysia. Mutational analysis was performed by PCR and Sanger sequencing of the GALNS gene in 17 patients.
RESULTS: The patients (15 females and 6 males) had a mean age (± SD) of 15.5 (± 8.1) years. Mean age at symptom onset was 2.6 (± 2.1) years and at confirmed diagnosis was 6.9 (± 4.5) years. The study cohort included patients from all the main ethnic groups in Malaysia - 57% Malay, 29% Chinese and 14% Indian. Common presenting symptoms included pectus carinatum (57%) and genu valgum (43%). Eight patients (38%) had undergone surgery, most commonly knee surgeries (29%) and cervical spine decompression (24%). Patients had limited endurance with lower mean walking distances with increasing age. GALNS gene analysis identified 18 distinct mutations comprising 13 missense, three nonsense, one small deletion and one splice site mutation. Of these, eight were novel mutations (Tyr133Ser, Glu158Valfs*12, Gly168*, Gly168Val, Trp184*, Leu271Pro, Glu320Lys, Leu508Pro). Mutations in exons 1, 5 and 9 accounted for 51% of the mutant alleles identified.
CONCLUSIONS: All the MPS IVA patients in this study had clinical impairments. A better understanding of the natural history and the clinical and genetic spectrum of MPS IVA in this population may assist early diagnosis, improve management and permit timely genetic counselling and prenatal diagnosis.
SIGNIFICANCE: Mutant HRAS drives metastasis of head and neck cancer by switching off the Hippo pathway to activate the YAP1-AXL axis and to stimulate lymphovascular angiogenesis.
METHODS: A hybrid model of a decision tree and Markov model was developed to evaluate 3 strategies for treating newly diagnosed epilepsy among adults: (i) CBZ initiation without HLA-B*15:02 screening (current practice); (ii) universal HLA-B*15:02 screening prior to CBZ initiation; and (iii) alternative prescribing without HLA-B*15:02 screening. The model was populated with real-world inputs derived from the Malaysian population. From a societal perspective, base-case analysis and sensitivity analyses estimated the costs and outcomes over a lifetime. Incremental cost-effectiveness ratios were calculated.
RESULTS: In the base-cases analysis, universal HLA-B*15:02 screening yielded the lowest total costs and the highest total quality-adjusted life years (QALYs) gained. Compared with current practice, universal screening was less costly by USD100 and more effective by QALYs increase of 0.1306, while alternative prescribing resulted in 0.1383 QALYs loss at additional costs of USD332. The highest seizure remission rate (56%) was estimated for universal HLA-B*15:02 screening vs. current practice (54%) and alternative prescribing (48%).
CONCLUSION: Our study suggests that universal HLA-B*15:02 screening is a cost-effective intervention in Malaysia. With the demonstrated value of real-world evidence in economic evaluations, more relevant standardization efforts should be emphasized to better inform decision-making.
METHODS AND FINDINGS: Genetic instruments to proxy 12 risk factors were constructed by identifying single nucleotide polymorphisms (SNPs) that were robustly (P < 5 × 10-8) and independently associated with each respective risk factor in previously reported genome-wide association studies. These risk factors included genetic liability to 3 factors (endometriosis, polycystic ovary syndrome, type 2 diabetes) scaled to reflect a 50% higher odds liability to disease. We obtained summary statistics for the association of these SNPs with risk of overall and histotype-specific invasive epithelial ovarian cancer (22,406 cases; 40,941 controls) and low malignant potential tumours (3,103 cases; 40,941 controls) from the Ovarian Cancer Association Consortium (OCAC). The OCAC dataset comprises 63 genotyping project/case-control sets with participants of European ancestry recruited from 14 countries (US, Australia, Belarus, Germany, Belgium, Denmark, Finland, Norway, Canada, Poland, UK, Spain, Netherlands, and Sweden). SNPs were combined into multi-allelic inverse-variance-weighted fixed or random effects models to generate effect estimates and 95% confidence intervals (CIs). Three complementary sensitivity analyses were performed to examine violations of MR assumptions: MR-Egger regression and weighted median and mode estimators. A Bonferroni-corrected P value threshold was used to establish strong evidence (P < 0.0042) and suggestive evidence (0.0042 < P < 0.05) for associations. In MR analyses, there was strong or suggestive evidence that 2 of the 12 risk factors were associated with invasive epithelial ovarian cancer and 8 of the 12 were associated with 1 or more invasive epithelial ovarian cancer histotypes. There was strong evidence that genetic liability to endometriosis was associated with an increased risk of invasive epithelial ovarian cancer (odds ratio [OR] per 50% higher odds liability: 1.10, 95% CI 1.06-1.15; P = 6.94 × 10-7) and suggestive evidence that lifetime smoking exposure was associated with an increased risk of invasive epithelial ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04-1.78; P = 0.02). In analyses examining histotypes and low malignant potential tumours, the strongest associations found were between height and clear cell carcinoma (OR per SD increase: 1.36, 95% CI 1.15-1.61; P = 0.0003); age at natural menopause and endometrioid carcinoma (OR per year later onset: 1.09, 95% CI 1.02-1.16; P = 0.007); and genetic liability to polycystic ovary syndrome and endometrioid carcinoma (OR per 50% higher odds liability: 0.89, 95% CI 0.82-0.96; P = 0.002). There was little evidence for an association of genetic liability to type 2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding globulin with ovarian cancer or its subtypes. The primary limitations of this analysis include the modest statistical power for analyses of risk factors in relation to some less common ovarian cancer histotypes (low grade serous, mucinous, and clear cell carcinomas), the inability to directly examine the association of some ovarian cancer risk factors that did not have robust genetic variants available to serve as proxies (e.g., oral contraceptive use, hormone replacement therapy), and the assumption of linear relationships between risk factors and ovarian cancer risk.
CONCLUSIONS: Our comprehensive examination of possible aetiological drivers of ovarian carcinogenesis using germline genetic variants to proxy risk factors supports a role for few of these factors in invasive epithelial ovarian cancer overall and suggests distinct aetiologies across histotypes. The identification of novel risk factors remains an important priority for the prevention of epithelial ovarian cancer.
METHODS: HCAECs were stimulated for 24 hours (h) with 200 µg/ml of Lipopolysaccharides (LPS) and different concentrations of NSO (55, 110, 220, 440 µg/ml) or TQ (4.5, 9.0, 18.0, 36.0 µm). The effects of NSO and TQ on gene and protein expressions were measured using multiplex gene assay and ELISA assay, respectively. Rose Bengal assay was used to analyse monocyte binding activity.
RESULTS: NSO and TQ significantly reduced ICAM-1 and VCAM-1 gene and protein expressions. TQ showed significant reduction activity of the biomarkers in dose dependent manner. HCAECs pre-treated with NSO and TQ for 24 h significantly lowered monocytes adherence compared to non-treated HCAECs.
CONCLUSIONS: NSO and TQ supplementation have anti-atherogenic properties and inhibit monocytes' adherence to HCAECs via down-regulation of ICAM-1 expression. NSO could potentially be incorporated in standard treatment regimens to prevent atherosclerosis and its related complications.
Materials and Methods: Subgingival plaque samples were collected from 60 individuals with varying severity of chronic periodontitis and 30 individuals with a clinically healthy periodontium. The samples were subjected to PCR analysis to identify P. gingivalis, followed by heteroduplex analysis to identify the strain diversity in a given sample. Bacterial culture was carried out as a comparative standard.
Results: Of the 56 samples that were positive for P. gingivalis by PCR, 54 samples yielded eight different heteroduplex patterns. Analysis of these patterns indicated that two strains of P. gingivalis were present in 41 individuals (45.6%) and three strains were present in 13 individuals (14.4%). Detection of P. gingivalis by PCR was significantly more in the periodontitis group as compared to the healthy group.
Conclusions: Species-specific PCR and heteroduplex analysis provide a simple and accurate method to analyse the strain diversity of P. gingivalis. P. gingivalis was detected in both healthy periodontal sites as well as sites with periodontitis. The presence of two or three P. gingivalis strains was seen in 60% of the samples.
METHODS:: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging.
RESULTS:: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented.
CONCLUSION:: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine.
ADVANCES IN KNOWLEDGE:: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.