METHODS: Ten antibiotics, including bedaquiline, clofazimine, ethambutol, ethionamide, isoniazid, levofloxacin, linezolid, moxifloxacin, pretomanid, pyrazinamide, were investigated. TB antibiotic information sources were examined, consisting of 85 Patient Information Leaflets (PILs) and 40 antibiotic web resouces. Of these 85 PILs, 72 were taken from the National Medicines Regulator from six countries (3 TB high-incidence [Rwanda, Malaysia, South Africa] + 3 TB low-incidence [UK, Ireland, Malta] countries). Readability data was grouped into three categories, including (i) high TB-incidence countries (n = 33 information sources), (ii) low TB-incidence countries (n = 39 information sources) and (iii) web information (n = 53). Readability was calculated using Readable software, to obtain four readability scores [(i) Flesch Reading Ease (FRE), (ii) Flesch-Kincaid Grade Level (FKGL), (iii) Gunning Fog Index and (iv) SMOG Index], as well as two text metrics [words/sentence, syllables/word].
RESULTS: Mean readability scores of patient-facing TB antibiotic information for FRE and FKGL, were 47.4 ± 12.6 (sd) (target ≥ 60) and 9.2 ± 2.0 (target ≤ 8.0), respectively. There was no significant difference in readability between low incidence countries and web resources, but there was significantly poorer readability associated with PILs from high incidence countries versus low incidence countries (FRE; p = 0.0056: FKGL; p = 0.0095).
CONCLUSIONS: Readability of TB antibiotic PILs is poor. Improving readability of PILs should be an important objective when preparing patient-facing written materials, thereby improving patient health/treatment literacy.
METHODS: This review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic databases including MEDLINE, CINAHL, PubMed and EMBASE were searched up to September 2017 for relevant guidelines. Other databases such as NICE, Scottish Intercollegiate Guidelines Network (SIGN) and the websites of professional societies were also searched for relevant guidelines. The quality and reporting of included guidelines were assessed using the Appraisal of Guidelines for Research and Evaluation II (AGREE-II) instrument.
RESULTS AND DISCUSSION: Six guidelines were eligible for inclusion in our review. Among 6 domains of AGREE-II, "clarity of presentation" scored the highest (80.6%), whereas "applicability" scored the lowest (11.8%). All the guidelines supported the antibiotic de-escalation strategy, whereas the majority of the guidelines (5 of 6) recommended that empirical antibiotic therapy should be implemented in accordance with local microbiological data. All the guidelines suggested that for early-onset HAP/VAP, therapy should start with a narrow spectrum empirical antibiotic such as penicillin or cephalosporins, whereas for late-onset HAP/VAP, the guidelines recommended the use of a broader spectrum empirical antibiotic such as the penicillin extended spectrum carbapenems and glycopeptides.
WHAT IS NEW AND CONCLUSIONS: Expert guidelines promote the judicious use of antibiotics and prevent antibiotic overuse. The quality and validity of available HAP/VAP guidelines would be enhanced by improving their adherence to accepted best practice for the management of HAP and VAP.
METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity.
RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells.
CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.
METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.
RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.
CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.
METHODS AND RESULTS: The crude extracts of E. pubescens were obtained through methanol extraction, and evaluated for antimicrobial activities. From this extract, 1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate (etlingerin) was isolated. When compared to curcumin (a compound with a similar chemical structure), etlingerin showed twofold lower minimum inhibitory concentration values while also being bactericidal. Through time kill assay, etlingerin showed rapid killing effects (as fast as 60 min) against the Gram-positive bacteria (Staphylococcus aureus ATCC 43300 and Bacillus subtilis ATCC 8188). Further assessment revealed that etlingerin caused leakage of intracellular materials, therefore suggesting alteration in membrane permeability as its antimicrobial mechanism. Cytotoxicity study demonstrated that etlingerin exhibited approximately 5- to 12-fold higher IC50 values against several cell lines, as compared to curcumin.
CONCLUSIONS: Etlingerin isolated from E. pubescens showed better antibacterial and cytotoxic activities when compared to curcumin. Etlingerin could be safe for human use, though further cytotoxicity study using animal models is needed.
SIGNIFICANCE AND IMPACT OF THE STUDY: Etlingerin has a potential to be used in treating bacterial infections due to its good antimicrobial activity, while having potentially low cytotoxicity.
METHODS: We conducted this scoping review to collect evidence related to the antimicrobial potential of diverse natural compounds from Zingiberaceae plants and their synthetic derivatives. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews guidelines. The literature search was conducted using PubMed, Web of Science and Scopus electronic databases for relevant studies published from 2012 to 2023. A total of 28 scientific studies fulfilled the inclusion criteria. The authors of these studies implemented in vitro and in silico methods to examine the antimicrobial potency and underlying mechanisms of the investigated compounds.
RESULT: The evidence elucidates the antimicrobial activity of natural secondary metabolites from Zingiberaceae species and their synthetic derivatives against a broad panel of gram-positive and gram-negative bacteria, fungi and viruses.
CONCLUSION: To date, researchers have proposed the application of bioactive compounds derived from Zingiberaceae plants and their synthetic analogues as antimicrobial agents. Nevertheless, more investigations are required to ascertain their efficacy and to broaden their commercial applicability.
AIM: This study was conducted to carry out the extraction, identification, and biological evaluation of active metabolites isolated from SUK 25 against three MRSA strains, namely, MRSA ATCC 43300, MRSA ATCC 33591, and MRSA ATCC 49476.
MATERIALS AND METHODS: The production of secondary metabolites by this strain was optimized through Thronton's media. Isolation, purification, and identification of the bioactive compounds were carried out using reversed-phase high-performance liquid chromatography, high-resolution mass spectrometry, Fourier transform infrared, and one-dimensional and two-dimensional nuclear magnetic resonance.
RESULTS: During screening procedure, SUK 25 exhibited good antimicrobial potential against several strains of MRSA. The best biological activity was shown from fraction number VII and its subfractions F2 and F3 with minimum inhibitory concentration values at 16 µg/mL and 8 µg/mL, respectively. These two subfractions were identified as diketopiperazine cyclo-(tryptophanyl-prolyl) and chloramphenicol.
CONCLUSION: On the basis of obtained results, SUK 25 isolated from Z. spectabile can be regarded as a new valuable source to produce secondary metabolites against bacteria, especially MRSA.