Displaying publications 441 - 460 of 1086 in total

Abstract:
Sort:
  1. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  2. Tong T, Hao C, Shen J, Liu S, Yan S, Aslam MS, et al.
    Brain Res Bull, 2024 Jan;206:110838.
    PMID: 38123022 DOI: 10.1016/j.brainresbull.2023.110838
    BACKGROUND: Depression is associated with lowered mood, anxiety, anhedonia, cognitive impairments, and even suicidal tendencies in severe cases. Yet few studies have directed acupuncture's mechanism toward enhancing axonal repair correlated with synaptic plasticity and anti-inflammatory effects related to oxidative stress in the hippocampus.

    METHODS: Male Sprague-Dawley (SD) rats were randomly divided into control group (CON), chronic unpredictable mild stress (CUMS) group, CUMS + electroacupuncture group (EA), and CUMS + fluoxetine group (FLX) (n = 10/group). Rats were given a 28-day treatment at the Shangxing (GV23) and Fengfu (GV16) acupoints with electroacupuncture or fluoxetine (2.1 mg/kg).

    RESULTS: Rats exposed to CUMS induced depression-like behaviors and spatial learning-memory impairment, changed the ionized calcium binding adaptor molecule 1 (IBA-1), Vglut1, myelin basic protein (MBP), and postsynaptic density protein 95 (PSD95) level of hippocampal, increased the Nod-like receptor protein 3 (NLRP3), atypical squamous cell (ASC), Caspase level and hippocampal reactive oxygen species (ROS), and prompted the activation of Epha4-mediated signaling and an inflammatory response. Conversely, electroacupuncture administration reduced these changes and prevented depression-like behaviors and cognitive impairment. Electroacupuncture also promoted hippocampal expression of Sirtuin1(SIRT1), Nuclear factor erythroid 2-like (Nrf2), Heme oxygenase-1 (HO-1); reduced the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-alpha (TNF-α); and prevented neural damage, particularly the synaptic myelin sheath, and neuroinflammation by regulating Eph receptor A4 (EphA4) in the hippocampal.

    CONCLUSION: These results indicate that electroacupuncture prevents depression-like behaviors with cognitive impairment and synaptic and neuronal damage, probably by reducing EphA4, which mediates ROS hyperfunction and the inflammatory response.

    Matched MeSH terms: Reactive Oxygen Species/metabolism
  3. Lim PE, Wong TF, Lim DV
    Environ Int, 2001 May;26(5-6):425-31.
    PMID: 11392762
    This study was conducted to: (1) assess the role of wetland vegetation in the removal of oxygen demand and nitrogen under tropical conditions, (2) estimate the uptake of nitrogen and copper by wetland plants and (3) investigate the speciation of Cu in wetland media among four operationally defined host fractions, namely exchangeable, carbonate, reducible and organically bound. Four laboratory-scale wetland units, two free-water-surface (FWS) and two subsurface-flow (SF) with one of each planted with cattails (Typha augustifolia), were fed with primary-treated sewage and operated at nominal retention times of 0.6-7 days. The influent and effluent BOD/COD and nitrogen concentrations were monitored to assess the performance of the wetland units for various mass loading rates. At the end of the study, all cattail plants were harvested and analyzed for total Kjeldahl nitrogen (TKN). Four other wetland units, which were identical to the first four, were fed with domestic wastewater spiked with copper in increasing concentrations. Copper speciation patterns in the sand layer were determined at the end of the study. The results showed that wetland vegetation did not play an important role in oxygen demand removal but were capable of removing about 22% and 26% of the nitrogen input in the FWS and SF wetland units, respectively. Mass balance analysis indicated that less than 1% of copper introduced was taken up by the cattails. Copper speciation patterns in the sand media showed that the exchangeable fraction contributed 30-57% and 63-80% of the nonresidual copper in the planted and unplanted FWS wetlands, respectively. For SF units, the percentages were 52-62% and 59-67%, respectively. This indicates that large amount of copper in the media were potentially remobilizable.
    Matched MeSH terms: Oxygen/metabolism*
  4. Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA
    Open Vet J, 2023 Dec;13(12):1623-1630.
    PMID: 38292712 DOI: 10.5455/OVJ.2023.v13.i12.12
    BACKGROUND: Hyperglycemia increases reactive oxygen species (ROS), which contributes to diabetic complications such as kidney cell damage. Antioxidant administration could inhibit ROS and kidney cell damage commonly seen in hyperglycemia.

    AIM: We want to demonstrate that the antioxidant properties of Swietenia macrophylla ethanol extract nanoparticles can prevent kidney cell damage brought on by streptozotocin (STZ) in the current investigation.

    METHODS: This study employs high-energy ball milling to produce nanoparticles from S. macrophylla extract. Additionally, dynamic light scattering (DLS) is utilized to characterize the nanoparticle sizes of the S. macrophylla ethanol extract. Five groups, each consisting of 8 rats, were formed from 40 rats. Control rats received distilled water, the diabetic rats were administered STZ injections, while S. macrophylla rats were given S. macrophylla extract nanoparticles orally and STZ injection. After the trial, blood from a rat was drawn intracardially to check the levels of blood urea nitrogen (BUN) and creatinine. The levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) were then assessed in kidney tissue samples. Histological alterations were evaluated in kidney section samples.

    RESULTS: A DLS analysis estimated the size of the S. macrophylla ethanol extract nanoparticles to be about 91.50 ± 23.06 nm. BUN and creatinine levels were significantly raised after STZ treatment. STZ significantly decreased SOD and GPx levels in kidney tissue while raising MDA levels (p < 0.05). Swietenia macrophylla ethanol extract nanoparticle caused the decreased levels of BUN and creatinine in blood to normal levels (p < 0.05), indicating that S. macrophylla ethanol extract prevented the STZ-induced kidney cell damage. Additionally, S. macrophylla nanoparticles significantly raise GPx and SOD levels in kidney tissue while lowering MDA levels (p < 0.05). These actions are thought to have prevented kidney histological alterations (degeneration and necrosis) in diabetic rats.

    CONCLUSION: According to these results, the anti-oxidative stress properties of S. macrophylla nanoparticles make them potentially effective nephroprotective therapies for STZ-induced kidney cell damage.

    Matched MeSH terms: Reactive Oxygen Species/pharmacology
  5. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al.
    Reprod Biol Endocrinol, 2018 Sep 11;16(1):87.
    PMID: 30205828 DOI: 10.1186/s12958-018-0406-2
    Reports of the increasing incidence of male infertility paired with decreasing semen quality have triggered studies on the effects of lifestyle and environmental factors on the male reproductive potential. There are numerous exogenous and endogenous factors that are able to induce excessive production of reactive oxygen species (ROS) beyond that of cellular antioxidant capacity, thus causing oxidative stress. In turn, oxidative stress negatively affects male reproductive functions and may induce infertility either directly or indirectly by affecting the hypothalamus-pituitary-gonadal (HPG) axis and/or disrupting its crosstalk with other hormonal axes. This review discusses the important exogenous and endogenous factors leading to the generation of ROS in different parts of the male reproductive tract. It also highlights the negative impact of oxidative stress on the regulation and cross-talk between the reproductive hormones. It further describes the mechanism of ROS-induced derangement of male reproductive hormonal profiles that could ultimately lead to male infertility. An understanding of the disruptive effects of ROS on male reproductive hormones would encourage further investigations directed towards the prevention of ROS-mediated hormonal imbalances, which in turn could help in the management of male infertility.
    Matched MeSH terms: Reactive Oxygen Species/metabolism*
  6. Balavaishnavi B, Kamaraj M, Nithya TG, Santhosh P, GokilaLakshmi S, Shaik MR
    Med Oncol, 2024 Mar 29;41(5):103.
    PMID: 38553593 DOI: 10.1007/s12032-024-02341-5
    Rauvolfia tetraphylla is an essential medicinal plant that has been widely used in traditional medicine for various disease treatments. However, the tumor suppressor activity of R. tetraphylla and its phytocompounds were not explored against triple-negative breast cancer. The current research investigated the impact of R. tetraphylla methanolic extract (RTE) and its isolated compounds Ajmaline (RTC1) and Reserpine (RTC2) on triple-negative breast cancer cell line (MDA-MB-231) focusing on anti-proliferative effects. Our study imparts that RTE and RTC2 showed promising cytotoxic effects compared to RTC1. So further experiments have proceeded with RTE and RTC2, to evaluate its proliferation, migration, and apoptotic effect. The result shows around 80% of cells were observed in the G0/G1 phase in cell cycle analysis indicating the cell cycle inhibition and duel staining clearly showed the apoptotic effect. The migration of cells after the scratch was 60.45% observed in control and 90% in treated cells showing the inhibition of migration. ROS distribution was intense compared to control indicating the increased ROS stress in treated cells. Both RTE and RTC2-treated cells showed the potential to suppress proliferation and induce apoptotic change by upregulating BAX and MST-1 and suppressing Bcl2, LATS-1, and YAP, proving that deregulation of YAP resulting in the blockage of TEAD-YAP complex and inhibit proliferation. Therefore, R. tetraphylla extract and its isolated compounds were demonstrated to find its ability to act against MDA-MB-231 and these findings will help adjudicate it as a therapeutic drug against experimental triple-negative breast cancer.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  7. Sugito SFA, Wibrianto A, Chang JY, Fahmi MZ, Khairunisa SQ, Sakti SCW, et al.
    Dalton Trans, 2024 Jul 09;53(27):11368-11379.
    PMID: 38896134 DOI: 10.1039/d4dt01123f
    The design of multimodal cancer therapy was focused on reaching an efficient process and minimizing harmful effects on patients. In the present study, the Au-MnO2 nanostructures have been successfully constructed and produced as novel multipurpose photosensitive agents simultaneously for photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). The prepared AuNPs were conjugated with MnO2 NPs by its participation in the thermal decomposition process of KMnO4 confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy (FT-IR). The 16.5 nm Au-MnO2 nanostructure exhibited an absorbance at 438 nm, which is beneficial for application in light induction therapy due to the NIR band, as well as its properties of generating reactive oxygen species (ROS) associated with the 808 nm laser light for PDT. The photothermal transduction efficiency was calculated and compared with that of the non-irradiated nanostructure, in which it was found that the 808 nm laser induced a high efficiency of 83%, 41.5%, and 37.5% for PDT, PTT, and CDT, respectively. The results of DPBF and TMB assays showed that the efficiency of PDT and PTT was higher than that of CDT. The nanostructure also confirmed the time-dependent peroxidase properties at different H2O2, TMB, and H2TMB concentrations, promising good potency in applying nanomedicine in clinical cancer therapy.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  8. Thegarathah P, Jewaratnam J, Simarani K, Elgharbawy AAM
    PeerJ, 2024;12:e17151.
    PMID: 39026538 DOI: 10.7717/peerj.17151
    BACKGROUND: The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways.

    METHODS: A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge.

    RESULTS: Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.

    Matched MeSH terms: Biological Oxygen Demand Analysis*
  9. Afzal S, Sattar MA, Johns EJ, Eseyin OA
    Eur J Pharmacol, 2021 Sep 15;907:174218.
    PMID: 34111396 DOI: 10.1016/j.ejphar.2021.174218
    Oxidative stress causes hypoadiponectemia and reactive oxygen species production. This study investigates the pathophysiological role and potential effects of adiponectin with partial and full peroxisome proliferator-activated receptor-gamma agonists on modulation of metabolic dysregulation and oxidative stress in diabetic model of Wistar Kyoto rats (WKY). Forty two male WKY rats were randomized equally into 7 groups (n = 6), Group I serve as control, group II as WKY diabetic control, groups III, IV and V treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg) and adiponectin (2.5 μg/kg), groups VI and VII were co-treated as: irbesartan + adiponectin, pioglitazone + adiponectin, respectively. Streptozotocin @ 40 mg/kg was administered intraperitoneally to induce diabetes. Plasma adiponectin, metabolic indices, pulse wave velocity, oxidative stress and antioxidant enzymatic activities were measured. Streptozotocin induced WKYs expressed hyperglycaemia, hypertriglyceridemia, hypercholesterolemia, hypoadiponectemia, increased arterial stiffness and decreased antioxidant enzymatic levels (P<0.05). Treatment with adiponectin or pioglitazone alone showed improvements in metabolic indices, antioxidant enzymes, and abrogated arterial stiffness, attenuated generation of reactive oxygen species and dyslipidaemic effects of streptozotocin better as compared to irbesartan sets of treatment (all P<0.05). Co-treatment of adiponectin with pioglitazone significantly amplified the improvement in plasma triglycerides, adiponectin concentration, pulse wave velocity and antioxidant enzymatic activities indicating synergistic effects of adiponectin with full PPAR-γ agonist.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  10. Oslan SNH, Tan JS, Oslan SN, Matanjun P, Mokhtar RAM, Shapawi R, et al.
    Molecules, 2021 Oct 27;26(21).
    PMID: 34770879 DOI: 10.3390/molecules26216470
    Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  11. Wong YE, Razif MFM, Ng ST, Tan CS, Fung SY, Murugan DD
    Int J Med Mushrooms, 2024;26(11):27-40.
    PMID: 39241161 DOI: 10.1615/IntJMedMushrooms.2024055061
    Hypertension is a risk factor for cardiovascular diseases such as coronary artery disease, heart failure, and stroke. Lignosus rhinocerus (Cooke) Ryvarden (also known as tiger milk mushroom), has been reported to exhibit a range of pharmacological effects, such as anti-inflammatory, anti-proliferative, antioxidative, immunomodulatory and anti-asthmatic activities. Thus far, there is limited research that has explored its ability to mediate vascular effects in vivo. Therefore, this study investigated the antihypertensive and vascular protective effects of L. rhinocerus TM02® sclerotia supplementation in spontaneously hypertensive rats (SHR). Wistar Kyoto (WKY) rats served as a normotensive control group. SHR were orally administered with L. rhinocerus TM02® sclerotia (100 mg/kg and 300 mg/kg, respectively) for 8 weeks, and blood pressure was monitored every 2 weeks. Vascular function was evaluated using an organ bath (aorta) and wire myograph (renal artery) at the treatment endpoint. The levels of reactive oxygen species (ROS) and nitric oxide (NO) in the aorta and renal artery were evaluated using dihydroethidium (DHE) and difluoro fluorescein acetate (DAF-FM) fluorescence assays, respectively. Total plasma nitrate/nitrite and tumor necrosis factor alpha (TNF-α) levels were evaluated via colorimetric assays. In vivo treatment with L. rhinocerus TM02® sclerotia significantly attenuated the increase in systolic blood pressure (SBP). It also alleviated vascular dysfunction and decreased elevated ROS in the aorta and renal arteries of the treated SHRs. Moreover, L. rhinocerus TM02® sclerotia attenuated plasma TNF-α level but increased total plasma nitrate/nitrite, albeit slightly, coupled with significantly increased NO at the vascular level. Collectively, the present study demonstrated that L. rhinocerus TM02® sclerotia supplementation exerted blood pressure lowering effects, partly attributed to improvements in vascular function via reduction in vascular oxidative stress.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  12. Farghadani R, Lim HY, Abdulla MA, Rajarajeswaran J
    Bioorg Chem, 2024 Nov;152:107730.
    PMID: 39216194 DOI: 10.1016/j.bioorg.2024.107730
    Breast cancer is the most prevalent cancer among women globally, with triple-negative breast cancer (TNBC) associated with poor prognosis and low five-year survival rates. Schiff base compounds, known for their extensive pharmacological activities, have garnered significant attention in cancer drug research. This study aimed to evaluate the anticancer potential of a novel β-diiminato compound and elucidate its mechanism of action. The compound's effect on cell viability was assessed using MTT assays in breast cancer cell lines including MCF-7 and MDA-MB-231. Cytotoxic effects were further analyzed using trypan blue exclusion and lactate dehydrogenase (LDH) release assays. In order to assess the mechanism of inhibitory activity and mode of cell death induced by this compound, flow cytometry of cell cycle distribution and apoptosis analysis were carried out. Apoptosis incidence was initially assessed through cell and nuclear morphological changes (Hoechst 33342/Propidium iodide (PI) staining) and further confirmed by Annexin V/PI staining and flow cytometry analysis. In addition, the effect of this compound on the disruption of mitochondrial membrane potential (MMP) and generation of the reactive oxygen species (ROS) was determined using the JC-1 indicator and DCFDA dye, respectively. The results demonstrated that the 24 h treatment with β-diiminato compound significantly suppressed the viability of MDA-MB-231 and MCF-7 cancer cells in a dose-dependent manner with the IC50 value of 2.41 ± 0.29 and 3.51 ± 0.14, respectively. The cytotoxic effect of the compound was further confirmed with a dose-dependent increase in the number of dead cells and enhanced LDH level in the culture medium. This compound exerted its anti-proliferative effect by G2/M phase cell growth arrest in MDA-MB-231 breast cancer cells and induced apoptosis-mediated cell death, which involved characteristic changes in cell and nuclear morphology, phosphatidylserine externalization, mitochondrial membrane depolarization, and increased ROS level. Neither hepatotoxicity nor nephrotoxicity was detected in the biochemical and histopathological analysis confirming the safety characterization of this compound usage. Therefore, the results significantly confirmed the potential anticancer activity of a novel β-diiminato compound, as evidenced by the induction of cell cycle arrest and apoptosis, which might be driven by the ROS‑mediated mitochondrial death pathway. This compound can be a promising candidate for future anticancer drug design and TNBC treatment, and further preclinical and clinical studies are warranted.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  13. Ajorlo M, Abdullah RB, Yusoff MK, Halim RA, Hanif AH, Willms WD, et al.
    Environ Monit Assess, 2013 Oct;185(10):8649-58.
    PMID: 23604787 DOI: 10.1007/s10661-013-3201-8
    This study investigates the applicability of multivariate statistical techniques including cluster analysis (CA), discriminant analysis (DA), and factor analysis (FA) for the assessment of seasonal variations in the surface water quality of tropical pastures. The study was carried out in the TPU catchment, Kuala Lumpur, Malaysia. The dataset consisted of 1-year monitoring of 14 parameters at six sampling sites. The CA yielded two groups of similarity between the sampling sites, i.e., less polluted (LP) and moderately polluted (MP) at temporal scale. Fecal coliform (FC), NO3, DO, and pH were significantly related to the stream grouping in the dry season, whereas NH3, BOD, Escherichia coli, and FC were significantly related to the stream grouping in the rainy season. The best predictors for distinguishing clusters in temporal scale were FC, NH3, and E. coli, respectively. FC, E. coli, and BOD with strong positive loadings were introduced as the first varifactors in the dry season which indicates the biological source of variability. EC with a strong positive loading and DO with a strong negative loading were introduced as the first varifactors in the rainy season, which represents the physiochemical source of variability. Multivariate statistical techniques were effective analytical techniques for classification and processing of large datasets of water quality and the identification of major sources of water pollution in tropical pastures.
    Matched MeSH terms: Oxygen/analysis; Biological Oxygen Demand Analysis
  14. Lim SH, Yam ML, Lam ML, Kamarulzaman FA, Samat N, Kiew LV, et al.
    Mol Pharm, 2014 Sep 2;11(9):3164-73.
    PMID: 25077598 DOI: 10.1021/mp500351s
    This study aims to improve the photodynamic properties and biological effectiveness of 15(1)-hydroxypurpurin-7-lactone dimethyl ester (G2), a semisynthetic photosensitizer, for the PDT treatment of cancer. The strategy we undertook was by conjugating G2 with aspartic acid and lysine amino acid moieties. The photophysical properties, singlet oxygen generation, distribution coefficiency (Log D in octanol/PBS pH 7.4), and photostability of these analogues and their in vitro bioactivities such as cellular uptake, intracellular localization, and photoinduced cytotoxicity were evaluated. In addition, selected analogues were also investigated for their PDT-induced vasculature occlusion in the chick chorioallantoic membrane model and for their antitumor efficacies in Balb/C mice bearing 4T1 mouse mammary tumor. From the study, conjugation with aspartic acid improved the aqueous solubility of G2 without affecting its photophysical characteristics. G2-Asp showed similar in vitro and in vivo antitumor efficacies compared to the parent compound. Given the hydrophilic nature of G2-Asp, the photosensitizer is a pharmaceutically advantageous candidate as it can be formulated easily for systemic administration and has reduced risk of aggregation in vascular system.
    Matched MeSH terms: Singlet Oxygen/pharmacology; Singlet Oxygen/chemistry
  15. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, et al.
    J Assist Reprod Genet, 2019 Feb;36(2):241-253.
    PMID: 30382470 DOI: 10.1007/s10815-018-1350-y
    PURPOSE: This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction.

    METHODS: Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS 

    Matched MeSH terms: Reactive Oxygen Species/isolation & purification*; Reactive Oxygen Species/metabolism
  16. Salar U, Khan KM, Jabeen A, Faheem A, Fakhri MI, Saad SM, et al.
    Bioorg Chem, 2016 12;69:37-47.
    PMID: 27669119 DOI: 10.1016/j.bioorg.2016.09.006
    Coumarin sulfonates 4-43 were synthesized by reacting 3-hydroxy coumarin 1, 4-hydroxy coumarin 2and6-hydroxy coumarin 3 with different substituted sulfonyl chlorides and subjected to evaluate for their in vitro immunomodulatory potential. The compounds were investigated for their effect on oxidative burst activity of zymosan stimulated whole blood phagocytes using a luminol enhanced chemiluminescence technique. Ibuprofen was used as standard drug (IC50=54.2±9.2μM). Eleven compounds 6 (IC50=46.60±14.6μM), 8 (IC50=11.50±6.5μM), 15 (IC50=21.40±12.2μM), 19 (IC50=5.75±0.86μM), 22 (IC50=10.27±1.06μM), 23 (IC50=33.09±5.61μM), 24 (IC50=4.93±0.58μM), 25 (IC50=21.96±14.74μM), 29 (IC50=12.47±9.2μM), 35 (IC50=20.20±13.4μM) and 37 (IC50=14.47±5.02μM) out of forty demonstrated their potential suppressive effect on production of reactive oxygen species (ROS) as compared to ibuprofen. All the synthetic derivatives 4-43 were characterized by different available spectroscopic techniques such as 1H NMR, 13C NMR, EIMS and HRMS. CHN analysis was also performed.
    Matched MeSH terms: Reactive Oxygen Species/antagonists & inhibitors*; Reactive Oxygen Species/metabolism
  17. Leong SW, Chia SL, Abas F, Yusoff K
    Eur J Med Chem, 2018 Sep 05;157:716-728.
    PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039
    In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
    Matched MeSH terms: Reactive Oxygen Species/analysis; Reactive Oxygen Species/metabolism
  18. Major VJ, Chiew YS, Shaw GM, Chase JG
    Biomed Eng Online, 2018 Nov 12;17(1):169.
    PMID: 30419903 DOI: 10.1186/s12938-018-0599-9
    BACKGROUND: Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP-FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective.

    DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.

    CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.

    Matched MeSH terms: Oxygen/blood; Oxygen/chemistry
  19. Kim KT, Morton S, Howe S, Chiew YS, Knopp JL, Docherty P, et al.
    Trials, 2020 Feb 01;21(1):130.
    PMID: 32007099 DOI: 10.1186/s13063-019-4035-7
    BACKGROUND: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.

    METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2 oxygenation) and hospital and 90-day mortality.

    DISCUSSION: The CURE RCT is the first trial comparing significant clinical outcomes in patients with ARDS in whom PEEP is selected at minimum elastance using an objective model-based method able to quantify and consider both inter-patient and intra-patient variability. CURE aims to demonstrate the hypothesized benefit of patient-specific PEEP and attest to the significance of real-time monitoring and decision-support for MV in the critical care environment.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry, ACTRN12614001069640. Registered on 22 September 2014. (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366838&isReview=true) The CURE RCT clinical protocol and data usage has been granted by the New Zealand South Regional Ethics Committee (Reference number: 14/STH/132).

    Matched MeSH terms: Oxygen/blood*; Oxygen Consumption
  20. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Reactive Oxygen Species/metabolism; Reactive Oxygen Species/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links