PURPOSE: This study aimed to identify antidiabetic regimens as well as other factors that associated with glycemic control in T2DM patients with different stages of chronic kidney disease (CKD).
PATIENTS AND METHODS: This retrospective, cross-sectional study involved 242 T2DM inpatients and outpatients with renal complications from January 2009 to March 2014 and was conducted in a tertiary teaching hospital in Malaysia. Glycated hemoglobin (A1C) was used as main parameter to assess patients' glycemic status. Patients were classified to have good (A1C <7%) or poor glycemic control (A1C ≥7%) based on the recommendations of the American Diabetes Association.
RESULTS: Majority of the patients presented with CKD stage 4 (43.4%). Approximately 55.4% of patients were categorized to have poor glycemic control. Insulin (57.9%) was the most commonly prescribed antidiabetic medication, followed by sulfonylureas (43%). Of all antidiabetic regimens, sulfonylureas monotherapy (P<0.001), insulin therapy (P=0.005), and combination of biguanides with insulin (P=0.038) were found to be significantly associated with glycemic control. Other factors including duration of T2DM (P=0.004), comorbidities such as anemia (P=0.024) and retinopathy (P=0.033), concurrent medications such as erythropoietin therapy (P=0.047), α-blockers (P=0.033), and antigouts (P=0.003) were also correlated with A1C.
CONCLUSION: Identification of factors that are associated with glycemic control is important to help in optimization of glucose control in T2DM patients with renal complication.
METHODS: Animals were divided into three groups: (i) normal non-diabetic (NDM), (ii) diabetic treated (tocotrienol-rich fractions - TRF) and (iii) diabetic untreated (non-TRF). The treatment group received oral administration of tocotrienol-rich fractions (200 mg/kg body weight) daily for eight weeks. The normal non-diabetic and the diabetic untreated groups were fed standard rat feed. Blood glucose and lipid profiles, oxidative stress markers and morphological changes of the thoracic aorta were evaluated.
RESULTS: Tocotrienol-rich fractions treatment reduced serum glucose and glycated hemoglobin concentrations. The tocotrienol-rich fractions group also showed significantly lower levels of plasma total cholesterol, low-density lipoprotein cholesterol, and triglyceride, as compared to the untreated group. The tocotrienol-rich fractions group had higher levels of high-density lipoprotein cholesterol, as compared to the untreated group. Superoxide dismutase activity and levels of vitamin C in plasma were increased in tocotrienol-rich fractions-treated rats. The levels of plasma and aorta malondealdehyde + 4-hydroxynonenal (MDA + 4-HNE) and oxidative DNA damage were significant following tocotrienol-rich fractions treatment. Electron microscopic examination showed that the normal morphology of the thoracic aorta was disrupted in STZ-diabetic rats. Tocotrienol-rich fractions supplementation resulted in a protective effect on the vessel wall.
CONCLUSION: These results show that tocotrienol-rich fractions lowers the blood glucose level and improves dyslipidemia. Levels of oxidative stress markers were also reduced by administration of tocotrienol-rich fractions. Vessel wall integrity was maintained due to the positive effects mediated by tocotrienol-rich fractions.
METHODS: A sample of 3895 individuals without known diabetes underwent detailed interview and health examination, including anthropometric and biochemical evaluation, between 2004 and 2007. Pearson's correlation, analysis of variance and multiple linear regression analyses were used to examine the influence of ethnicity on HbA(1c) .
RESULTS: As fasting plasma glucose increased, HbA(1c) increased more in Malays and Indians compared with Chinese after adjustment for age, gender, waist circumference, serum cholesterol, serum triglyceride and homeostasis model assessment of insulin resistance (P-interaction < 0.001). This translates to an HbA(1c) difference of 1.1 mmol/mol (0.1%, Indians vs. Chinese), and 0.9 mmol/mol (0.08%, Malays vs. Chinese) at fasting plasma glucose 5.6 mmol/l (the American Diabetes Association criterion for impaired fasting glycaemia); and 2.1 mmol/mol (0.19%, Indians vs. Chinese) and 2.6 mmol/mol (0.24%, Malays vs. Chinese) at fasting plasma glucose 7.0 mmol/l, the diagnostic criterion for diabetes mellitus.
CONCLUSIONS: Using HbA(1c) in place of fasting plasma glucose will reclassify different proportions of the population in different ethnic groups. This may have implications in interpretation of HbA(1c) results across ethnic groups and the use of HbA(1c) for diagnosing diabetes mellitus.