RESEARCH DESIGN AND METHODS: NIDDM patients of Chinese, Indian, and Malay origin attending a diabetic clinic in Kuala Lumpur, Malaysia, were matched for age, sex, diabetes duration, and glycemic control (n = 34 in each group). Urinary albumin-to-creatinine ratio was measured in an early morning urine sample. Biochemical measurements included markers of the acute-phase response: serum sialic acid, triglyceride, and (lowered) HDL cholesterol.
RESULTS: The frequency of microalbuminuria did not differ among the Chinese, Indian, and Malay patients (44, 41, and 47%, respectively). In Chinese patients, those with microalbuminuria had evidence of an augmented acute-phase response, with higher serum sialic acid and triglyceride and lower HDL cholesterol levels; and urinary albumin-to-creatinine ratio was correlated with serum sialic acid and triglyceride. The acute-phase response markers were not different in Indians, with microalbuminuria being high in even the normoalbuminuric Indians; only the mean arterial blood pressure was correlated with urinary albumin-to-creatinine ratio in the Indians. Malay NIDDM subjects had an association of microalbuminuria with acute-phase markers, but this was weaker than in the Chinese subjects.
CONCLUSIONS: Microalbuminuria is associated with an acute-phase response in Chinese NIDDM patients in Malaysia, as previously found in Caucasian NIDDM subjects. Elevated urinary albumin excretion has different correlates in other racial groups, such as those originating from the Indian subcontinent. The acute-phase response may have an etiological role in microalbuminuria.
METHODS: In this investigator-initiated, single-arm, open-label, pilot study, nine biopsy-proven NASH patients with T2DM were given empagliflozin 25 mg daily for 24 weeks. Liver biopsy was repeated at the end of treatment. The histological outcomes were compared with the placebo group of a previous 48-week clinical trial.
RESULTS: There was a significant reduction in body mass index (median change, Δ = -0.7 kg per m2, p = 0.011), waist circumference (Δ = -3 cm, p = 0.033), systolic blood pressure (Δ = -9 mmHg, p = 0.024), diastolic blood pressure (Δ = -6 mmHg, p = 0.033), fasting blood glucose (Δ = -1.7 mmol/L, p = 0.008), total cholesterol (Δ = -0.5 mmol/L, p = 0.011), gamma glutamyl transpeptidase (Δ = -19 U/L, p = 0.013), volumetric liver fat fraction (Δ = -7.8%, p = 0.017), steatosis (Δ = -1, p = 0.014), ballooning (Δ = -1, p = 0.034), and fibrosis (Δ = 0, p = 0.046). All histological components either remained unchanged or improved, except in one patient who had worsening ballooning. Empagliflozin resulted in significantly greater improvements in steatosis (67% vs. 26%, p = 0.025), ballooning (78% vs. 34%, p = 0.024), and fibrosis (44% vs. 6%, p = 0.008) compared with historical placebo.
CONCLUSION: This pilot study provides primary histological evidence that empagliflozin may be useful for the treatment of NASH. This preliminary finding should prompt larger clinical trials to assess the effectiveness of empagliflozin and other SGLT2 inhibitors for the treatment of NASH in T2DM patients. Trial registry number ClincialTrials.gov number, NCT02964715.
Objective: To examine the effects of a quality improvement intervention comprising information and communications technology and contact with nonphysician personnel on the care and cardiometabolic risk factors of patients with type 2 diabetes in 8 Asia-Pacific countries.
Design, Setting, and Participants: This 12-month multinational open-label randomized clinical trial was conducted from June 28, 2012, to April 28, 2016, at 50 primary care or hospital-based diabetes centers in 8 Asia-Pacific countries (India, Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam). Six countries were low and middle income, and 2 countries were high income. The study was conducted in 2 phases; phase 1 enrolled 7537 participants, and phase 2 enrolled 13 297 participants. Participants in both phases were randomized on a 1:1 ratio to intervention or control groups. Data were analyzed by intention to treat and per protocol from July 3, 2019, to July 21, 2020.
Interventions: In both phases, the intervention group received 3 care components: a nurse-led Joint Asia Diabetes Evaluation (JADE) technology-guided structured evaluation, automated personalized reports to encourage patient empowerment, and 2 or more telephone or face-to-face contacts by nurses to increase patient engagement. In phase 1, the control group received the JADE technology-guided structured evaluation and automated personalized reports. In phase 2, the control group received the JADE technology-guided structured evaluation only.
Main Outcomes and Measures: The primary outcome was the incidence of a composite of diabetes-associated end points, including cardiovascular disease, chronic kidney disease, visual impairment or eye surgery, lower extremity amputation or foot ulcers requiring hospitalization, all-site cancers, and death. The secondary outcomes were the attainment of 2 or more primary diabetes-associated targets (glycated hemoglobin A1c <7.0%, blood pressure <130/80 mm Hg, and low-density lipoprotein cholesterol <100 mg/dL) and/or 2 or more key performance indices (reduction in glycated hemoglobin A1c≥0.5%, reduction in systolic blood pressure ≥5 mm Hg, reduction in low-density lipoprotein cholesterol ≥19 mg/dL, and reduction in body weight ≥3.0%).
Results: A total of 20 834 patients with type 2 diabetes were randomized in phases 1 and 2. In phase 1, 7537 participants (mean [SD] age, 60.0 [11.3] years; 3914 men [51.9%]; 4855 patients [64.4%] from low- and middle-income countries) were randomized, with 3732 patients allocated to the intervention group and 3805 patients allocated to the control group. In phase 2, 13 297 participants (mean [SD] age, 54.0 [11.1] years; 7754 men [58.3%]; 13 297 patients [100%] from low- and middle-income countries) were randomized, with 6645 patients allocated to the intervention group and 6652 patients allocated to the control group. In phase 1, compared with the control group, the intervention group had a similar risk of experiencing any of the primary outcomes (odds ratio [OR], 0.94; 95% CI, 0.74-1.21) but had an increased likelihood of attaining 2 or more primary targets (OR, 1.34; 95% CI, 1.21-1.49) and 2 or more key performance indices (OR, 1.18; 95% CI, 1.04-1.34). In phase 2, the intervention group also had a similar risk of experiencing any of the primary outcomes (OR, 1.02; 95% CI, 0.83-1.25) and had a greater likelihood of attaining 2 or more primary targets (OR, 1.25; 95% CI, 1.14-1.37) and 2 or more key performance indices (OR, 1.50; 95% CI, 1.33-1.68) compared with the control group. For attainment of 2 or more primary targets, larger effects were observed among patients in low- and middle-income countries (OR, 1.50; 95% CI, 1.29-1.74) compared with high-income countries (OR, 1.20; 95% CI, 1.03-1.39) (P = .04).
Conclusions and Relevance: In this 12-month clinical trial, the use of information and communications technology and nurses to empower and engage patients did not change the number of clinical events but did reduce cardiometabolic risk factors among patients with type 2 diabetes, especially those in low- and middle-income countries in the Asia-Pacific region.
Trial Registration: ClinicalTrials.gov Identifier: NCT01631084.
METHODS: Using a 2-by-2-by-2 factorial design, we randomly assigned participants without cardiovascular disease who had an elevated INTERHEART Risk Score to receive a polypill (containing 40 mg of simvastatin, 100 mg of atenolol, 25 mg of hydrochlorothiazide, and 10 mg of ramipril) or placebo daily, aspirin (75 mg) or placebo daily, and vitamin D or placebo monthly. We report here the outcomes for the polypill alone as compared with matching placebo, for aspirin alone as compared with matching placebo, and for the polypill plus aspirin as compared with double placebo. For the polypill-alone and polypill-plus-aspirin comparisons, the primary outcome was death from cardiovascular causes, myocardial infarction, stroke, resuscitated cardiac arrest, heart failure, or revascularization. For the aspirin comparison, the primary outcome was death from cardiovascular causes, myocardial infarction, or stroke. Safety was also assessed.
RESULTS: A total of 5713 participants underwent randomization, and the mean follow-up was 4.6 years. The low-density lipoprotein cholesterol level was lower by approximately 19 mg per deciliter and systolic blood pressure was lower by approximately 5.8 mm Hg with the polypill and with combination therapy than with placebo. The primary outcome for the polypill comparison occurred in 126 participants (4.4%) in the polypill group and in 157 (5.5%) in the placebo group (hazard ratio, 0.79; 95% confidence interval [CI], 0.63 to 1.00). The primary outcome for the aspirin comparison occurred in 116 participants (4.1%) in the aspirin group and in 134 (4.7%) in the placebo group (hazard ratio, 0.86; 95% CI, 0.67 to 1.10). The primary outcome for the polypill-plus-aspirin comparison occurred in 59 participants (4.1%) in the combined-treatment group and in 83 (5.8%) in the double-placebo group (hazard ratio, 0.69; 95% CI, 0.50 to 0.97). The incidence of hypotension or dizziness was higher in groups that received the polypill than in their respective placebo groups.
CONCLUSIONS: Combined treatment with a polypill plus aspirin led to a lower incidence of cardiovascular events than did placebo among participants without cardiovascular disease who were at intermediate cardiovascular risk. (Funded by the Wellcome Trust and others; TIPS-3 ClinicalTrials.gov number, NCT01646437.).