Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.
The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.
Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
Phosphoric acid impregnated activated carbon from date pits (DPAC) was prepared through single step activation. Prepared DPAC was studied for its structural, elemental, chemical, surface and crystal nature. Adsorption ability of the DPAC was assessed through divalent lead ions separation studies. Effect of adsorbent dosage, contact time, pH, operating temperature and initial feed concentration on lead removal by DPAC was studied. Maximum Pb(II) adsorption capacity of 101.35 mg/g was attained for a contact time of 30 min and pH of 6 at 30°C. Increase in initial feed concentration enhanced the adsorption ability of DPAC and the rise in adsorbent dosage resulted in improved Pb(II) removal efficiency. Thermodynamic studies revealed that the lead adsorption on DPAC was exothermic and instantaneous in nature. Kinetic and equilibrium studies confirmed the suitability of pseudo-second order and Langmuir isotherm for divalent lead ions binding on DPAC. Reusability studies showed that HCl was the effective regeneration medium and the DPAC could be reused for a maximum of 4 times with slight reduction in Pb(II) removal efficiency (<10%). Results indicated the promising use of date pits biomass as a low cost and efficient starting material to prepare activated carbon for divalent lead ions removal.
Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24-201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%-64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.
The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
Allium cepa assay was carried out in this study to evaluate genotoxic effects of raw and treated water samples from Perak River in Perak state, Malaysia. Samples were collected from three surface water treatment plants along the river, namely WTPP, WTPS, and WTPK. Initially, triplicates of equal size Allium cepa (onions) bulbs, 25-30 mm in diameter and average weight of 20 g, were set up in distilled water for 24 h at 20 ± 2 °C and protected from direct sunlight, to let the roots to grow. After germination of roots (0.5-1.0 cm in length), bulbs were transferred to collected water samples each for a 96-h period of exposure. The root physical deformations were observed. Genotoxicity quantification was based on mitotic index and genotoxicity level. Statistical analysis using cross-correlation function for replicates from treated water showed that root length has inverse correlation with mitotic indices (r = - 0.969) and frequencies of cell aberrations (r = - 0.976) at lag 1. Mitotic indices and cell aberrations of replicates from raw water have shown positive correlation at lag 1 (r = 0.946). Genotoxicity levels obtained were 23.4 ± 1.98 (WTPP), 26.68 ± 0.34 (WTPS), and 30.4 ± 1.13 (WTPK) for treated water and 17.8 ± 0.18 (WTPP), 37.15 ± 0.17 (WTPS), and 47.2 ± 0.48 (WTPK) for raw water. The observed cell aberrations were adherence, chromosome delay, C-metaphase, chromosome loss, chromosome bridge, chromosome breaks, binucleated cell, mini cell, and lobulated nuclei. The morphogenetic deformations obtained were likely due to genotoxic substances presence in collected water samples. Thus, water treatment in Malaysia does not remove genotoxic compounds.
Matched MeSH terms: Water Purification/statistics & numerical data*
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores.
The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4-8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.
The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
Microbial flocs formed from raw textile wastewater in a prototype Aerobic Biofilm Reactor (ABR) system were characterised and studied for their potential use in the treatment of textile wastewater. After 90-100 days of operation, microbial flocs of loose irregular structures were obtained from the reactor with good settling velocity of 33 m/h and sludge volume index (SVI) of 48.2 mL/g. Molecular analysis of the flocs using PCR-amplified 16S rDNA sequence showed 98% homology to those of Bacillus sp, Paenibacillus sp and Acromobacter sp. Detection of Ca(2+)(131 mg/g) and Fe(2+)(131 mg/g) using atomic absorption spectrometer might be implicated with the flocs formation. In addition, presence of Co(2+) and Ni(2+) were indicative of the flocs ability to accumulate at least a fraction of the metals' present in the wastewater. When the flocs were used for the treatment of raw textile wastewater, they showed good removal of COD and colour about 55% and 70% respectively, indicating their potential application.
The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
The need for water continues to become more acute with the changing requirements of an expanding world population. Using a logistical analysis of data from 301 respondents from households that harvest rainwater in Uganda, the relationship between dependent variables, such as water management performed as female-dominated practices, and independent variables, such as years of water harvesting, family size, tank operation and maintenance, and the presence of local associations, was investigated. The number of years of water harvesting, family size, tank operation and maintenance, and presence of local associations were statistically significantly related to adequate efficient water management. The number of years of water harvesting was linked to women's participation in household chores more than to the participation of men, the way of livelihoods lived for many years. Large families were concurrent with a reduction in water shortages, partially because of the availability of active labour. The findings also reveal important information regarding water-related operations and maintenance at the household level and the presence of local associations that could contribute some of the information necessary to minimise water-related health risks. Overall, this investigation revealed important observations about the water management carried out by women with respect to underlying safe-water shortages, gender perspectives, and related challenges in Uganda that can be of great importance to developing countries.
The effectiveness of combined nanofiltration and disinfection processes was studied by comparing the pre-disinfection and post-disinfection when in combination with nanofiltration. Four types of sulfonamide (sulfanilamide, sulfadiazine, sulfamethoxazole, and sulfadimethoxine) were chosen as substrates, with sodium hypochlorite as a disinfectant. A laboratory-scale nanofiltration system was used to conduct the following sets of experiment: (1) a pre-chlorination system, where the free active chlorine (FAC) was added to the membrane influent; and (2), a post-chlorination system, where the FAC was added to the membrane effluent. Overall, the pre-disinfection nanofiltration system showed higher sulfonamide removal efficiency compared to the post-chlorination nanofiltration system (>99.5% versus >89.5%). In the case of limited FAC ([FAC]0: [sulfonamide]0≤1), the removal efficiency for the post-chlorination nanofiltration system was higher, due to the prior nanofiltration process that could remove 12.5% to 80% of sulfonamide. The flux of the treated feed system was considerably higher than in the untreated feed system; however, the membrane was observed to be slightly damaged due to residual chlorine attack.