Displaying publications 5141 - 5160 of 5779 in total

Abstract:
Sort:
  1. Kumar P, Abubakar AA, Ahmed MA, Hayat MN, Halim FA, Rahman MM, et al.
    Anim Biosci, 2024 May 07.
    PMID: 38754849 DOI: 10.5713/ab.24.0050
    OBJECTIVE: The livestock handler attitude and their handling of animals is crucial for improving animal welfare standards, minimizing stress, improving productivity and meat quality. The present study was undertaken to assess the effect of training livestock handlers on behavioral, physiological, and hormonal responses during preslaughter handling in goats.

    METHODS: A total of 6 handlers were divided into trained (trained in basic animal handling practices, animal behavior, and animal welfare), contact trained (not trained directly but interacted and saw the working of trained handlers), and untrained groups (no formal training). The handling experiment was conducted on 18 male goats by following a cross-over design. The goats were moved from lairage to slaughter point by trained, contact-trained, and untrained handlers. Various behavioral, physiological, and hormonal parameters were recorded at the lairage before handling and at the slaughter point after handling the goats.

    RESULTS: The training of livestock handlers had a significant effect on behavioral, physiological, and hormonal responses in goats. The goats handled by untrained and contact-trained handlers were recorded with intense vocalization, significant (p<0.05) increase in heart rate and blood glucose, and catecholamines (adrenaline and nor-adrenaline), thereby indicating stress and poor animal welfare. The trained handlers were observed to use visual interactions (waving of hands or objects, blocking, hand raising, etc), and lower stress responses were recorded in the goats handled by this group.

    CONCLUSION: The present study highlights the importance of training to livestock handlers in improving animal welfare and minimizing stress in goats during preslaughter stress.

  2. Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, et al.
    Pathol Res Pract, 2024 Apr 27;258:155303.
    PMID: 38728793 DOI: 10.1016/j.prp.2024.155303
    Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
  3. Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, et al.
    Environ Res, 2024 Apr 30;252(Pt 3):119024.
    PMID: 38692419 DOI: 10.1016/j.envres.2024.119024
    Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
  4. Gothwal SK, Goyal K, Garg AS, Sahu BK, Agrawal M, Mishra A, et al.
    Curr Cardiol Rev, 2024 Jul 03.
    PMID: 38963101 DOI: 10.2174/011573403X290326240703100925
    BACKGROUND: Brucellosis is a public health concern that affects multiple organs. However, cardiovascular problems arise infrequently, affecting fewer than 2% of cases, typically presenting as endocarditis.

    CASE PRESENTATION: A 50-year male was admitted with low-grade fever, night sweats, weight loss (13 kg), malaise, and generalized weakness for the past 6 months. On clinical examination, he was febrile with 39.0°C, an average heart rate of 54 bpm, and 100/40 mmHg blood pressure. On cardiovascular examination, S1 and S2 were soft with pan systolic murmur present in the mitral area, and the early diastolic murmur was present in the left third intercostal space. Electrocardiography was suggestive of third-degree heart block with AV dissociation. Transthoracic echocardiography showed mobile vegetations attached to multiple valves- an aortic valve (18.2x11.9mm) and a mitral valve (2.9x7.5mm) with perivalvular abscess. He was given oral doxycycline (100mg B.D.) and rifampicin (600mg/day); the patient responded, but the AV block did not resolve.

    CONCLUSION: This report has drawn attention to multivalvular involvement and cardiac rhythm abnormalities in Brucellosis (in this case, A.V. dissociation was present) because early diagnosis and treatment can cause a significant decrease in morbidity as well as mortality by appropriate treatment.

  5. Sahoo A, Dwivedi K, Almalki WH, Mandal AK, Alhamyani A, Afzal O, et al.
    Nanomedicine (Lond), 2024 Apr 23.
    PMID: 38651634 DOI: 10.2217/nnm-2024-0017
    Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.
  6. Tookhy NA, Isa NM, Rahaman YA, Ahmad NI, Sharma RSK, Idris LH, et al.
    Parasitol Res, 2024 Apr 30;123(5):199.
    PMID: 38687367 DOI: 10.1007/s00436-024-08219-9
    Rumen flukes cause heavy economic losses in the ruminant industry worldwide, especially in tropical and subtropical countries. This study estimated the prevalence of rumen flukes in buffaloes, identified the species diversity, and determined risk factors associated with rumen fluke prevalence in Perak, Peninsular Malaysia. A cross-sectional study was conducted, and 321 faecal samples were collected from six buffalo farms. A structured questionnaire was developed, and farmers were interviewed to obtain information regarding risk factors associated with rumen fluke infection. The faecal samples were examined using sedimentation and Flukefinder® techniques. Genomic DNA was extracted from the fluke eggs recovered using the Flukefinder® method, and the internal transcribed spacer 2 (ITS2) fragment was amplified and sequenced to facilitate species identification. The results showed that the overall prevalence of rumen fluke across the sampled farms was 40.2% (129/321). Three rumen fluke species were identified, namely, Fischoederius elongatus, F. cobboldi, and Orthocoelium streptocoelium. Several management factors had a significant association (P 
  7. Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, et al.
    Clin Chim Acta, 2024 Apr 23;559:119685.
    PMID: 38663472 DOI: 10.1016/j.cca.2024.119685
    Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
  8. Lee CL, H'ng PS, Paridah MT, Chin KL, Rashid U, Maminski M, et al.
    R Soc Open Sci, 2018 Dec;5(12):180775.
    PMID: 30662718 DOI: 10.1098/rsos.180775
    In the present study, agricultural biomass-palm kernel shell (PKS) and coconut shell (CS)-was used to produce high porosity bioadsorbent using two-stage continuous physical activation method with different gas carrier (air and N2) in each stage. The activation temperature was set constant at 600, 700, 800 or 900°C for both activation stages with the heating rate of 3°C min-1. Two parameters, the gas carrier and activation temperature, were determined as the significant factors on the adsorption properties of bioadsorbent. BET, SEM, FTIR, TGA, CHNS/O and ash content were used to elucidate the developed bioadsorbent prepared from PKS and CS and its capacity towards the adsorption of methylene blue and iodine. The novel process of two-stage continuous physical activation method was able to expose mesopores and micropores that were previously covered/clogged in nature, and simultaneously create new pores. The synthesized bioadsorbents showed that the surface area (PKS: 456.47 m2 g-1, CS: 479.17 m2 g-1), pore size (PKS: 0.63 nm, CS: 0.62 nm) and pore volume (PKS: 0.13 cm3 g-1, CS: 0.15 cm3 g-1) were significantly higher than that of non-treated bioadsorbent. The surface morphology of the raw materials and synthesized bioadsorbent were accessed by SEM. Furthermore, the novel process meets the recent industrial adsorbent requirements such as low activation temperature, high fixed carbon content, high yield, high adsorption properties and high surface area, which are the key factors for large-scale production of bioadsorbent and its usage.
  9. Kawaguchi-Suzuki M, Hogue MD, Khanfar NM, Lahoz MR, Law MG, Parekh J, et al.
    Am J Pharm Educ, 2019 May;83(4):7215.
    PMID: 31223162 DOI: 10.5688/ajpe7215
    Schools and colleges of pharmacy in the United States increasingly interact with those in Asian countries for various purposes such as education and research. For both those visiting and those hosting, it is important to understand and respect the culture of the other's country to enrich these interactions. This paper, the second of two manuscripts on Asian countries, focuses on India, Indonesia, Malaysia, Philippines, and Vietnam. For each country, the following information is provided: general introduction, health care system, pharmacy practice, and pharmacy education, stereotypes and misconceptions, recommendations for US-based health care professionals, faculty members, and students who visit these Asian countries, and recommendations for them to host visitors from these Asian countries. The aim of this paper is to assist US health care professionals, faculty members, and students in initiating and promoting a culturally sensitive engagement.
  10. Sellamuthu S, Chowdhury ZZ, Khalid K, Shibly SM, Rahman MM, Rana M, et al.
    Molecules, 2023 Sep 15;28(18).
    PMID: 37764415 DOI: 10.3390/molecules28186640
    In this research, activated carbon (AC) was synthesized from ligno-cellulosic residues of Adansonia kilima (Baobab) wood chips (AKTW) using two-step semi-carbonization and subsequent pyrolysis using microwave-induced heating (MWP) in the presence of a mild activating agent of K2CO3. The influence of process input variables of microwave power (x1), residence time (y1), and amount of K2CO3 (z1) were analysed to yield superior quality carbon having maximum removal efficiencies (R1) for lead (II) cations from waste effluents, fixed carbon percentages (R2), and carbon yield percentages (R3). Analysis of variance (ANOVA) was used to develop relevant mathematical models, with an appropriate statistical assessment of errors. Level factorial response surface methodology (RSM) relying on the Box-Behnken design (BBD) was implemented for the experimental design. The surface area and porous texture of the samples were determined using Brunauer, Emmett, and Teller (BET) adsorption/desorption curves based on the N2 isotherm. Surface morphological structure was observed using field emission scanning electron microscopic (FESEM) analysis. Thermogravimetric analysis (TGA) was carried out to observe the thermal stability of the sample. Change in the carbon content of the samples was determined using ultimate analysis. X-ray diffraction (XRD) analysis was performed to observe the crystalline and amorphous texture of the samples. The retention of a higher proportion of fixed carbon (80.01%) ensures that the synthesized adsorbent (AKTWAC) will have a greater adsorption capacity while avoiding unwanted catalytic activity for our synthesized final sample.
  11. Imon RR, Aktar S, Morshed N, Nur SM, Mahtarin R, Rahman FA, et al.
    Medicine (Baltimore), 2023 Nov 10;102(45):e35347.
    PMID: 37960765 DOI: 10.1097/MD.0000000000035347
    Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.
  12. Mehta M, Prasher P, Sharma M, Shastri MD, Khurana N, Vyas M, et al.
    Med Hypotheses, 2020 Nov;144:110254.
    PMID: 33254559 DOI: 10.1016/j.mehy.2020.110254
    The highly contagious coronavirus, which had already affected more than 2 million people in 210 countries, triggered a colossal economic crisis consequently resulting from measures adopted by various goverments to limit transmission. This has placed the lives of many people infected worldwide at great risk. Currently there are no established or validated treatments for COVID-19, that is approved worldwide. Nanocarriers may offer a wide range of applications that could be developed into risk-free approaches for successful therapeutic strategies that may lead to immunisation against the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which is the primary causative organism that had led to the current COVID-19 pandemic. We address existing as well as emerging therapeutic and prophylactic approaches that may enable us to effectively combat this pandemic, and also may help to identify the key areas where nano-scientists can step in.
  13. Dapari R, Mahfot MH, Chiu Yan Yee F, Ahmad ANI, Magayndran K, Ahmad Zamzuri M'I, et al.
    PLoS One, 2023;18(11):e0293987.
    PMID: 37943862 DOI: 10.1371/journal.pone.0293987
    INTRODUCTION: Malaysia's gross domestic product is heavily influenced by the food and beverage sector and the contribution of the industry to the national economy is expected to increase in the coming years. Thus, the need for employees in the food industry will continue to rise as this sector grows. Nevertheless, employees in the food industry are exposed to various occupational hazards that can lead to occupational injuries, mainly related to kitchen work. Given the increasing number of employees in the food industry and the rising trend of occupational injuries, this study was conducted to determine the prevalence of recent occupational injuries and their associated factors and predictors among food industry workers.

    METHODS: This cross-sectional study was conducted in 2023 among food industry workers in Selangor, Malaysia. The respondents were sampled using a multistage random sampling method. Data were collected via online self-administered questionnaires and analysed using descriptive statistics and logistic regression models in the SPSS software, version 25.

    RESULTS: A total of 250 responses were received from 342 samples, with an overall response rate of 73.0%. The prevalence of recent occupational injuries among food industry workers was 44.8%. Statistically, significant associations were present between occupational injuries and alcohol consumption (p = 0.001), poor knowledge (p = 0.031), poor compliance (p = 0.021), poor safety management (p = 0.021), poor safety training (p = 0.002), poor safety culture (p = 0.003), physical exposure (p < 0.001), and ergonomic exposure (p = 0.009). The predictors for recent occupational injuries among food industry workers were Malay (adjusted Odds Ratio; aOR = 2.60, p = 0.027, 95% Confidence Interval; CI = 1.116, 6.035), alcohol consumption (aOR = 5.31, p = 0.001, 95% CI = 2.042, 13.779), poor knowledge (aOR = 1.98, p = 0.032, 95% CI = 1.059, 3.691), poor safety culture (aOR = 2.44, p = 0.002, 95% CI = 1.372, 4.342), and exposure to physical hazards (aOR = 8.88, p < 0.001, 95% CI = 3.031, 26.014).

    CONCLUSION: This study has found a high prevalence of occupational injuries among food industry workers, thereby highlighting the importance of addressing alcohol consumption, improving worker knowledge, enhancing work safety culture, and better control measures on exposure to physical hazards, especially among Malay workers. By prioritising these factors, employers can create safer work environments and minimise the risk of occupational injuries.

  14. Rakib MRJ, Al Nahian S, Madadi R, Haider SMB, De-la-Torre GE, Walker TR, et al.
    Environ Sci Process Impacts, 2023 May 25;25(5):929-940.
    PMID: 36939043 DOI: 10.1039/d3em00014a
    Microplastic (MP) pollution is a major global issue that poses serious threats to aquatic organisms. Although research on MP pollution has been extensive, the relationship between MPs and water quality parameters in estuarine water systems is unclear. This work studied the spatiotemporal distribution and characteristics of MPs in the Karnaphuli River estuary, Bangladesh. MP abundance was calculated by towing with a plankton net (300 μm mesh size) at three river gradients (up-, mid- and downstream) and the association between physicochemical parameters of water (temperature, pH, salinity, electrical conductivity, total dissolved solids, and dissolved oxygen) and MP distribution patterns was also investigated. Mean MP abundance in water was higher during the wet season (April) (4.33 ± 2.45 items per m3) compared to the dry season (September) (3.65 ± 2.54 items per m3). In descending order, the highest MP abundance was observed downstream (6.60 items per m3) > midstream (3.15 items per m3) > upstream (2.22 items per m3). pH during the wet season (April) and temperature during the dry season (September) were key physicochemical parameters that correlated with river MP abundance (r = -0.74 and 0.74 respectively). Indicating that if the Karnaphuli River water has low pH or high temperature, there is likely to be high MPs present in the water. Most MP particles were film-shaped, white in color, and 1-5 mm in size. Of the six polymers detected, polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and cellulose were predominant, comprising roughly 17-19% each. These results can be used to model MP transport in the freshwater ecosystem of the Karnaphuli River estuary in Bangladesh to help develop future mitigation strategies.
  15. Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, et al.
    Front Bioeng Biotechnol, 2023;11:1160577.
    PMID: 37292094 DOI: 10.3389/fbioe.2023.1160577
    Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
  16. Riaz F, Hossain MS, Roney M, Ali Y, Qureshi S, Muhammad R, et al.
    J Biomol Struct Dyn, 2023 Nov;41(19):9756-9769.
    PMID: 36399018 DOI: 10.1080/07391102.2022.2146200
    Antimicrobial drug resistance (AMR) is a severe global threat to public health. The increasing emergence of drug-resistant bacteria requires the discovery of novel antibacterial agents. Quinoline derivatives have previously been reported to exhibit antimalarial, antiviral, antitumor, antiulcer, antioxidant and, most interestingly, antibacterial properties. In this study, we evaluated the binding affinity of three newly designed hydroxyquinolines derived from sulfanilamide (1), 4-amino benzoic acid (2) and sulfanilic acid (3) towards five bacterial protein targets (PDB ID: 1JIJ, 3VOB, 1ZI0, 6F86, 4CJN). The three derivatives were designed considering the amino acid residues identified at the active site of each protein involved in the binding of each co-crystallized ligand and drug-likeness properties. The ligands displayed binding energy values with the target proteins ranging from -2.17 to -8.45 kcal/mol. Compounds (1) and (3) showed the best binding scores towards 1ZI0/3VOB and 1JIJ/4CJN, respectively, which may serve as new antibiotic scaffolds. Our in silico results suggest that sulfanilamide (1) or sulfanilic acid (3) hydroxyquinoline derivatives have the potential to be developed as bacterial inhibitors, particularly MRSA inhibitors. But before that, it must go through the proper preclinical and clinical trials for further scientific validation. Further experimental studies are warranted to explore the antibacterial potential of these compounds through preclinical and clinical studies.Communicated by Ramaswamy H. Sarma.
  17. Lim SY, Harun UB, Gobil AR, Mustafa NA, Zahid NA, Amin-Nordin S, et al.
    PLoS One, 2021;16(9):e0256896.
    PMID: 34469489 DOI: 10.1371/journal.pone.0256896
    Determining the level of customer satisfaction in cleanliness regarding a product or service is a significant aspect of businesses. However, the availability of feedback tools for consumers to evaluate the cleanliness of a restaurant is a crucial issue as several aspects of cleanliness need to be evaluated collectively. To overcome this issue, this study designed a survey instrument based on the standard form used for grading the food premises and transformed it into a seven Likert scale questionnaire and consists of seven questions. This study employed fuzzy conjoint analysis to measure the level of satisfaction in cleanliness in food premises. This pilot study recruited 30 students in Universiti Teknologi MARA (UiTM) Seremban 3. The student's perception was represented by the scores calculated based on their degree of similarities and corresponding levels of satisfaction, whereby, only scores with the highest degree of similarity were selected. Furthermore, this study identified the aspects of hygiene that assessed based on the customers' satisfaction upon visiting the premises. The results indicated that the fuzzy conjoint analysis produced a similar outcome as the statistical mean, thus, was useful for the evaluation of customer satisfaction on the cleanliness of food premises.
  18. Osman MJ, Abdul Rashid JI, Khim OK, Zin Wan Yunus WM, Mohd Noor SA, Mohd Kasim NA, et al.
    RSC Adv, 2021 Jul 27;11(42):25933-25942.
    PMID: 35479481 DOI: 10.1039/d1ra04318h
    Acephate (Ac) is an organophosphate (OP) compound, which is able to inhibit the activity of acetylcholinesterase. Thus, the aim of this study was to optimize the detection of Ac using a thiolated acephate binding aptamer-citrate capped gold nanoparticle (TABA-Cit-AuNP) sensor that also incorporated an image processing technique. The effects of independent variables, such as the incubation period of TABA-Cit-AuNPs (3-24 h) for binding TABA to Cit-AuNPs, the concentration of phosphate buffer saline (PBS) (0.001-0.01 M), the concentration of thiolated acephate binding aptamer (TABA) (50-200 nM), and the concentration of magnesium sulphate (MgSO4) (1-300 mM) were investigated. A quadratic model was developed using a central composite design (CCD) from response surface methodology (RSM) to predict the sensing response to Ac. The optimum conditions such as the concentration of PBS (0.01 M), the concentration of TABA (200 nM), the incubation period of TABA-Cit-AuNPs (3 h), and the concentration of MgSO4 (1 mM) were used to produce a TABA-Cit-AuNPs sensor for the detection of Ac. Under optimal conditions, this sensor showed a detection ranging from 0.01 to 2.73 μM and a limit of detection (LOD) of 0.06 μM. Real sample analysis demonstrated this aptasensor as a good analytical method to detect Ac.
  19. Yulkifli Y, Yandes WP, Isa IM, Hashim N, Ulianas A, Sharif SNM, et al.
    Sensors (Basel), 2023 Oct 10;23(20).
    PMID: 37896460 DOI: 10.3390/s23208366
    The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode's sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from -0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water.
  20. Lee HK, Talib ZA, Mamat Mat Nazira MS, Wang E, Lim HN, Mahdi MA, et al.
    Materials (Basel), 2019 Jul 18;12(14).
    PMID: 31323741 DOI: 10.3390/ma12142295
    The effect of NaOH solution on the formation of nanoparticles has been the subject of ongoing debate in selenium-based material research. In this project, the robust correlation between the mechanistic growth of zinc selenide/graphene oxide (ZnSe/GO) composite and the concentration of NaOH are elucidated. The ZnSe/GO composite was synthesized via microwave-assisted hydrothermal method and the concentrations of NaOH are controlled at 2 M, 3 M, 4 M, 5 M and 6 M. The XRD spectra show that the crystal phases of the samples exhibited a 100% purity of ZnSe when the concentration of sodium hydroxide (NaOH) was set at 4 M. The further increase of NaOH concentration leads to the formation of impurities. This result reflects the essential role of hydroxyl ions in modifying the purity state of ZnSe/GO composite. The optical band gap energy of ZnSe/GO composite also decreased from 2.68 eV to 2.64 eV when the concentration of NaOH increased from 2 M to 4 M. Therefore, it can be concluded that the optimum concentration of NaOH used in synthesizing ZnSe/GO composite is 4 M. This project provides an alternative green method in the formation of a high purity ZnSe/GO composite.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links