Displaying publications 501 - 520 of 8208 in total

Abstract:
Sort:
  1. Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, et al.
    Mem Inst Oswaldo Cruz, 2014 Jul;109(4):502-5.
    PMID: 25004148
    Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems' locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
    Matched MeSH terms: Antitoxins/genetics; Bacterial Toxins/genetics; Acinetobacter baumannii/genetics
  2. Veera Singham G, Othman AS, Lee CY
    PLoS One, 2017;12(11):e0186690.
    PMID: 29186140 DOI: 10.1371/journal.pone.0186690
    Dispersal of soil-dwelling organisms via the repeatedly exposed Sunda shelf through much of the Pleistocene in Southeast Asia has not been studied extensively, especially for invertebrates. Here we investigated the phylogeography of an endemic termite species, Macrotermes gilvus (Hagen), to elucidate the spatiotemporal dynamics of dispersal routes of terrestrial fauna in Pleistocene Southeast Asia. We sampled 213 termite colonies from 66 localities throughout the region. Independently inherited microsatellites and mtDNA markers were used to infer the phylogeographic framework of M. gilvus. Discrete phylogeographic analysis and molecular dating based on fossil calibration were used to infer the dynamics of M. gilvus dispersal in time and space across Southeast Asia. We found that the termite dispersal events were consistently dated within the Pleistocene time frame. The dispersal pattern was multidirectional, radiating eastwards and southwards out of Indochina, which was identified as the origin for dispersal events. We found no direct dispersal events between Sumatra and Borneo despite the presence of a terrestrial connection between them during the Pleistocene. Instead, central Java served as an important link allowing termite colonies to be established in Borneo and Sumatra. Our findings support the hypothesis of a north-south dispersal corridor in Southeast Asia and suggest the presence of alternative dispersal routes across Sundaland during the Pleistocene. For the first time, we also propose that a west-east dispersal through over-water rafting likely occurred across the Pleistocene South China Sea. We found at least two independent entry routes for terrestrial species to infiltrate Sumatra and Borneo at different times.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Microsatellite Repeats/genetics; Isoptera/genetics
  3. Myint KA, Yaakub Z, Rafii MY, Oladosu Y, Samad MYA, Ramlee SI, et al.
    Biomed Res Int, 2021;2021:6620645.
    PMID: 33997027 DOI: 10.1155/2021/6620645
    Molecular characterization of oil palm germplasm is crucial in utilizing and conserving germplasm with promising traits. This study was conducted to evaluate the genetic diversity structures and relationships among 26 families of MPOB-Senegal oil palm germplasm using thirty-five microsatellite markers. High level of polymorphism (P = 96.26%), number of effective allele (N e = 2.653), observed heterozygosity (H o = 0.584), expected heterozygosity (H e = 0.550), total heterozygosity (H T = 0.666), and rare alleles (54) were observed which indicates that MPOB-Senegal germplasm has a broad genetic variation. Among the SSR markers, sMo00053 and sMg00133 were the most informative markers for discrimination among the MPOB-Senegal oil palm germplasm for having the highest private alleles and the rare alleles. For selection and conservation, oil palm populations with high rare alleles and Nei's gene diversity index should be considered as these populations may possess unique genes for further exploitation.
    Matched MeSH terms: Seeds/genetics*; Microsatellite Repeats/genetics*; Arecaceae/genetics*
  4. Langmia IM, Apalasamy YD, Omar SZ, Mohamed Z
    BMC Med Genet, 2015;16:63.
    PMID: 26286601 DOI: 10.1186/s12881-015-0202-1
    Preterm birth (PTB) is the major cause of death in newborn and the second major cause of death in children less than 5 years old worldwide. Genetic polymorphism has been implicated as a factor for the occurrence of preterm birth. The aim of this study is to evaluate whether polymorphism in the progesterone receptor (PGR) is associated with susceptibility to preterm birth.
    Matched MeSH terms: Polymorphism, Genetic/genetics*; Receptors, Progesterone/genetics*; Premature Birth/genetics*
  5. Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW
    BMC Genomics, 2017 Jan 06;18(1):40.
    PMID: 28061748 DOI: 10.1186/s12864-016-3453-0
    BACKGROUND: The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined.

    RESULTS: The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support.

    CONCLUSIONS: Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of Gracilaria sensu lato complex and recognition of Hydropuntia as a genus distinct from Gracilaria sensu stricto.

    Matched MeSH terms: Chloroplasts/genetics*; Gracilaria/genetics*; Genome, Chloroplast/genetics*
  6. Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, et al.
    Int J Obes (Lond), 2018 Dec;42(12):2022-2035.
    PMID: 29713043 DOI: 10.1038/s41366-018-0064-7
    BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction.

    METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population.

    RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P 

    Matched MeSH terms: Genetic Markers/genetics; DNA Methylation/genetics*; Adiposity/genetics*
  7. Sabri NA, Shamsuddin SH, Mat Zin AA
    Asian Pac J Cancer Prev, 2024 Feb 01;25(2):521-527.
    PMID: 38415538 DOI: 10.31557/APJCP.2024.25.2.521
    OBJECTIVE: The study aimed to evaluate E6 and E7 oncoproteins of HPV16 and HPV18 expression in formalin - fixed paraffin embedded (FFPE) tissue in different grades of the cervical lesion and evaluate the potential use of E6 and E7 oncoproteins derived from HPV 16 and 18 as diagnostic protein biomarkers for triaging cervical lesions.

    METHODOLOGY: A total of 102 FFPE cervical tissues were collected from 2 tertiary hospitals and immunohistochemical reactivity staining of E6 and E7 oncoproteins of HPV16 and HPV18 were evaluated using immunoreactive scoring (IRS) system and analysed statistically.

    RESULT: The result showed an increased oncoprotein expression with the progression of cervical lesions. There is a statistically significant association between histology grade and HPV16/18-E6 expression (p = 0.028). However, there are no significant association of histological grade to HPV16-E7 immunoreactivity score (p = 0.264) and HPV18-E7 (p=0.080).

    CONCLUSION: The immunohistochemical expression of HPV oncoproteins is a potential alternative diagnostic tool applicable in a low-resource laboratory setting. The advantage of the histochemical evaluation is that this method is simpler to apply and less expensive in comparison to in situ mRNA hybridization. Nevertheless, our study also found that antibodies against HPV that are commercially available suffer quite substantial specificity issues such as background staining and inconsistency between different batches. Hence, the utilization of antibody-based staining warrants stringent quality control.

    Matched MeSH terms: Papillomavirus E7 Proteins/genetics; Human papillomavirus 18/genetics; Human papillomavirus 16/genetics
  8. Mohd Ali MR, Lih Huey L, Foo PC, Goay YX, Ismail AS, Mustaffa KMF, et al.
    Biomed Res Int, 2019;2019:9451791.
    PMID: 31355287 DOI: 10.1155/2019/9451791
    Melioidosis and leptospirosis, caused by two different bacteria, Burkholderia pseudomallei and Leptospira spp., are potentially fatal infections that share a very similar spectrum of clinical features and cause significant mortality and morbidity in humans and livestock. Early detection is important for better clinical consequences. To our knowledge, there is no diagnostic tool available to simultaneously detect and differentiate melioidosis and leptospirosis in humans and animals. In this study, we described a duplex TaqMan probe-based qPCR for the detection of B. pseudomallei and Leptospira spp. DNA. The performance of the assay was evaluated on 20 B. pseudomallei isolates, 23 Leptospira strains, and 39 other microorganisms, as well as two sets of serially diluted reference strains. The duplex qPCR assay was able to detect 0.02 pg (~ 4 copies) Leptospira spp. DNA and 0.2 pg (~ 25.6 copies) B. pseudomallei DNA. No undesired amplification was observed in other microorganisms. In conclusion, the duplex qPCR assay was sensitive and specific for the detection of B. pseudomallei & Leptospira spp. DNA and is suitable for further analytical and clinical evaluation.
    Matched MeSH terms: DNA, Bacterial/genetics*; Leptospira/genetics*; Burkholderia pseudomallei/genetics*
  9. Tan KE, Ng WL, Marinov GK, Yu KH, Tan LP, Liau ES, et al.
    Sci Rep, 2021 Jul 13;11(1):14392.
    PMID: 34257379 DOI: 10.1038/s41598-021-93781-w
    Epstein-Barr virus (EBV) has been recently found to generate novel circular RNAs (circRNAs) through backsplicing. However, comprehensive catalogs of EBV circRNAs in other cell lines and their functional characterization are still lacking. In this study, we have identified a list of putative EBV circRNAs in GM12878, an EBV-transformed lymphoblastoid cell line, with a significant majority encoded from the EBV latent genes. A novel EBV circRNA derived from the exon 5 of LMP-2 gene which exhibited highest prevalence, was further validated using RNase R assay and Sanger sequencing. This circRNA, which we term circLMP-2_e5, can be universally detected in a panel of EBV-positive cell lines modelling different latency programs. It ranges from lower expression in nasopharyngeal carcinoma (NPC) cells to higher expression in B cells, and is localized to both the cytoplasm and the nucleus. We provide evidence that circLMP-2_e5 is expressed concomitantly with its cognate linear LMP-2 RNA upon EBV lytic reactivation, and may be produced as a result of exon skipping, with its circularization possibly occurring without the involvement of cis elements in the short flanking introns. Furthermore, we show that circLMP-2_e5 is not involved in regulating cell proliferation, host innate immune response, its linear parental transcripts, or EBV lytic reactivation. Taken together, our study expands the current repertoire of putative EBV circRNAs, broadens our understanding of the biology of EBV circRNAs, and lays the foundation for further investigation of their function in the EBV life cycle and disease development.
    Matched MeSH terms: Exons/genetics; RNA/genetics; Epstein-Barr Virus Infections/genetics
  10. Minaguchi K, Samejima M, Nambiar P, Kaneko Y, Ochiai E, Kakimoto Y, et al.
    Leg Med (Tokyo), 2024 Sep;70:102463.
    PMID: 38823287 DOI: 10.1016/j.legalmed.2024.102463
    Closely linked groups of markers on the X chromosome are very useful for testing complex kinship relationships involving X-STR transmission. The Argus X-12 kit, a unique commercially available kit, can obtain haplotypes of 4 linkage groups (LGs) consisting of 3 markers. Although many population data have been reported for forensic purposes, differences in discrimination ability exist between LG1 and LG2, 3, and 4 in East Asian populations, and the data of this kit would become more useful if the discrimination ability of the latter groups were increased. Therefore, for matches found using this kit for some linkage group data, then to increase the identification ability, we additionally introduced 13 X-STR loci and established a method allowing comparison using data from 25 loci. The 13X-STRs add two locus data to each of LG2, 3, and 4, and also add two closely linked group (CLG) data between LG2 and 3 and LG3 and 4 in one multiplex PCR. Assessment of this method for a Malay population for which data by Argus X-12 had already been reported showed that the frequencies of distinct haplotypes in LG2, 3, and 4 were increased by 33.0-42.6 %, and frequencies of unique haplotypes increased by 45.4-59.2 %. The respective haplotype diversity values of the additional 3-locus and 4-locus CLGs were 0.9838 and 0.9939, which helps to improve discriminatory power and to predict recombination locations on the X chromosome. Although we have been testing these loci with Japanese subjects, this system would also be useful for the Malay population.
    Matched MeSH terms: Asian Continental Ancestry Group/genetics; Forensic Genetics/methods
  11. George E, Faridah K, Trent RJ, Padanilam BJ, Huang HJ, Huisman TH
    Hemoglobin, 1986;10(4):353-63.
    PMID: 2427478
    Hematological and clinical data are presented for a young Malay patient with a homozygous (delta beta)zero-thalassemic condition. His red blood cells contained 100% fetal hemoglobin with alpha and G gamma chains only. Detailed gene mapping defined a large deletion with a 5' end between the Aha III and Apa I sites, some 200-400 bp 5' to the A gamma globin gene and a 3' end beyond sequences 17-18 kb 3' to the beta globin gene. This G gamma (A gamma delta beta)zero-type of thalassemia is different from all the other six types described before. Comparison of the hematological data of this patient with those of homozygotes for either the Sicilian or Spanish types of G gamma A gamma (delta beta)zero-thalassemia showed no differences; all homozygotes have a moderate anemia which is accentuated by the relatively high oxygen affinity of the Hb F containing erythrocytes.
    Matched MeSH terms: Fetal Hemoglobin/genetics; Globins/genetics; Thalassemia/genetics*
  12. Shepherdson JL, Hutchison K, Don DW, McGillivray G, Choi TI, Allan CA, et al.
    Am J Hum Genet, 2024 Mar 07;111(3):487-508.
    PMID: 38325380 DOI: 10.1016/j.ajhg.2024.01.007
    Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
    Matched MeSH terms: Transcription Factors/genetics; Zebrafish/genetics; Mutation, Missense/genetics
  13. Lim WF, Muniandi L, George E, Sathar J, Teh LK, Gan GG, et al.
    Blood Cells Mol. Dis., 2012 Jan 15;48(1):17-21.
    PMID: 22079025 DOI: 10.1016/j.bcmd.2011.10.002
    The alpha haemoglobin stabilising protein (AHSP) acts as a molecular chaperone for α-globin by stabilising nascent α-globin before transferring it to waiting free β-globin chains. Binding of AHSP to α-globin renders α-globin chemically inert whereby preventing it from precipitating and forming reactive oxygen species byproducts. The AHSP has been actively studied in the recent years, particularly in its relation to β-thalassaemia. Studies have shown that AHSP is a modifier in β-thalassaemia mice models. However, this relationship is less established in humans. Studies by some groups showed no correlation between the AHSP haplotypes and the severity of β-thalassaemia, whereas others have shown that certain AHSP haplotype could modify the phenotype of β-thalassaemia intermedia patients. We investigated the expression of AHSP in relation to selected demographic data, full blood count, HPLC results, HbE/β-thalassaemia genotype, Xmn-1 Gγ polymorphism, α-globin, β-globin and γ-globin expression. We found that AHSP expression was significantly correlated to mean cell haemoglobin level, HbF %, α-globin, β-globin and excess α-globin expression. We concluded that AHSP could be a secondary compensatory mechanism in red blood cells to counterbalance the excess α-globin chains in HbE/β-thalassaemia individuals.
    Matched MeSH terms: Blood Proteins/genetics*; Erythrocyte Indices/genetics; Fetal Hemoglobin/genetics*; Hemoglobin E/genetics*; beta-Thalassemia/genetics*; Molecular Chaperones/genetics*; Asian Continental Ancestry Group/genetics*; alpha-Globins/genetics*; beta-Globins/genetics; gamma-Globins/genetics
  14. Lai MI, Garner C, Jiang J, Silver N, Best S, Menzel S, et al.
    Twin Res Hum Genet, 2010 Dec;13(6):567-72.
    PMID: 21142933 DOI: 10.1375/twin.13.6.567
    Cytotoxic precipitation of free α-globin monomers and its production of reactive oxygen species cause red cell membrane damage that leads to anemia and eventually ineffective erythropoiesis in β-thalassemia. Alpha hemoglobin stabilizing protein (AHSP) was found to bind only to free α-globin monomers creating a stable and inert complex which remains soluble in the cytoplasm thus preventing harmful precipitations. Alpha hemoglobin stabilizing protein was shown to bind nascent α-globin monomers with transient strength before transferring α-globin to β-globin to form hemoglobin tetramer. A classical twin study would be beneficial to investigate the role of genetics and environment in the variation of alpha hemoglobin stabilizing protein expression as this knowledge will enable us to determine further investigations with regards to therapeutic interventions if alpha hemoglobin stabilizing protein is to be a therapeutic agent for β-thalassemia. This study investigates the heritability influence of alpha hemoglobin stabilizing protein expression and factors that may contribute to this. Results indicated that a major proportion of alpha hemoglobin stabilizing protein expression was influenced by genetic heritability (46%) with cis-acting factors accounting for 19% and trans-acting factors at 27%.
    Matched MeSH terms: Blood Proteins/genetics*; Diseases in Twins/genetics*; RNA, Messenger/genetics; Twins, Dizygotic/genetics; Twins, Monozygotic/genetics; beta-Thalassemia/genetics*; Molecular Chaperones/genetics*; Microsatellite Repeats/genetics; Genetic Predisposition to Disease/genetics*; Regulatory Elements, Transcriptional/genetics
  15. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, et al.
    Nature, 2015 Sep 24;525(7570):533-7.
    PMID: 26352475 DOI: 10.1038/nature15365
    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.
    Matched MeSH terms: Fruit/genetics; Genes, Homeobox/genetics; Introns/genetics; Alternative Splicing/genetics; Retroelements/genetics*; Genome, Plant/genetics*; RNA Splice Sites/genetics; Arecaceae/genetics*; RNA, Small Interfering/genetics; Epigenesis, Genetic/genetics*
  16. Barloy F, Lecadet MM, Delécluse A
    Gene, 1998 May 12;211(2):293-9.
    PMID: 9602158
    Three new open reading frames were found downstream from cbm71, a toxin gene from Clostridium bifermentans malaysia (Cbm) strain CH18. The first one (91bp downstream) called cbm72, is 1857bp long and encodes a 71727-Da protein (Cbm72) with a sequence similar to that of Bacillus thuringiensis delta-endotoxins. This protein shows no significant toxicity to mosquito larvae. The two others, cbm17.1 (462bp) and cbm17.2 (459bp), are copies of the same gene encoding Cbm P18 and P16 polypeptides and located 426bp and 1022bp downstream from cbm72, respectively. They encode 17189-Da and 17451-Da proteins with sequences 44.6% similar to that of Aspergillus fumigatus hemolysin; however, they were not hemolytic in the conditions tested.
    Matched MeSH terms: Bacillus thuringiensis/genetics; Bacterial Proteins/genetics; Bacterial Toxins/genetics*; Clostridium/genetics*; Endotoxins/genetics; Genes, Bacterial/genetics*; Mutation/genetics; Plasmids/genetics; Recombinant Proteins/genetics; Gene Expression/genetics
  17. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

    Matched MeSH terms: Alzheimer Disease/genetics*; DNA-Binding Proteins/genetics*; Gene Expression Regulation/genetics; Membrane Proteins/genetics*; Transcription Factors/genetics; Quantitative Trait Loci/genetics; Ubiquitin-Protein Ligases/genetics*; Adaptor Proteins, Signal Transducing/genetics*; Gene Regulatory Networks/genetics; Retinoblastoma Binding Proteins/genetics*
  18. Liu X, Yunus Y, Lu D, Aghakhanian F, Saw WY, Deng L, et al.
    Hum Genet, 2015 Apr;134(4):375-92.
    PMID: 25634076 DOI: 10.1007/s00439-014-1525-2
    The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
    Matched MeSH terms: Adaptation, Biological/genetics; Lymphotoxin-alpha/genetics; Malaria/genetics*; Tumor Necrosis Factor-alpha/genetics; Cadherins/genetics; Antigens, CD95/genetics; Population Groups/genetics*; Heme Oxygenase-1/genetics; Nitric Oxide Synthase Type II/genetics; Disease Resistance/genetics*
  19. Ngoi ST, Thong KL
    Biomed Res Int, 2014;2014:718084.
    PMID: 25371903 DOI: 10.1155/2014/718084
    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
    Matched MeSH terms: Genes, Bacterial/genetics; Mutation/genetics*; Nucleic Acid Denaturation/genetics*; Salmonella enterica/genetics*; Drug Resistance, Bacterial/genetics*; DNA Gyrase/genetics*; DNA Topoisomerase IV/genetics*
  20. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling KH
    Eur J Pharmacol, 2014 Oct 5;740:584-95.
    PMID: 24973693 DOI: 10.1016/j.ejphar.2014.06.025
    Breast cancer is the most common cancer among women worldwide and novel therapeutic agents are needed to treat this disease. The plant-based alkaloid berberine has potential therapeutic applications for breast cancer, although a better understanding of the genes and cellular pathways regulated by this compound is needed to define the mechanism of its action in cancer treatment. In this review, the molecular targets of berberine in various cancers, particularly breast cancer, are discussed. Berberine was shown to be effective in inhibiting cell proliferation and promoting apoptosis in various cancerous cells. Some signaling pathways affected by berberine, including the MAP (mitogen-activated protein) kinase and Wnt/β-catenin pathways, are critical for reducing cellular migration and sensitivity to various growth factors. This review will discuss recent studies and consider the application of new prospective approaches based on microRNAs and other crucial regulators for use in future studies to define the action of berberine in cancer. The effects of berberine on cancer cell survival and proliferation are also outlined.
    Matched MeSH terms: Neoplasms/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links