Displaying publications 501 - 520 of 812 in total

Abstract:
Sort:
  1. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  2. Ho GF, Chai CS, Alip A, Wahid MIA, Abdullah MM, Foo YC, et al.
    BMC Cancer, 2019 Sep 09;19(1):896.
    PMID: 31500587 DOI: 10.1186/s12885-019-6107-1
    BACKGROUND: This study aimed to evaluate the efficacy, side-effects and resistance mechanisms of first-line afatinib in a real-world setting.

    METHODS: This is a multicenter observational study of first-line afatinib in Malaysian patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small cell lung cancer (NSCLC). Patients' demographic, clinical and treatment data, as well as resistance mechanisms to afatinib were retrospectively captured. The statistical methods included Chi-squared test and independent t-test for variables, Kaplan-Meier curve and log-rank test for survival, and Cox regression model for multivariate analysis.

    RESULTS: Eighty-five patients on first-line afatinib from 1st October 2014 to 30th April 2018 were eligible for the study. EGFR mutations detected in tumors included exon 19 deletion in 80.0%, exon 21 L858R point mutation in 12.9%, and rare or complex EGFR mutations in 7.1% of patients. Among these patients, 18.8% had Eastern Cooperative Oncology Group performance status of 2-4, 29.4% had symptomatic brain metastases and 17.6% had abnormal organ function. Afatinib 40 mg or 30 mg once daily were the most common starting and maintenance doses. Only one-tenth of patients experienced severe side-effects with none having grade 4 toxicities. The objective response rate was 76.5% while the disease control rate was 95.3%. At the time of analysis, 56 (65.9%) patients had progression of disease (PD) with a median progression-free survival (mPFS) of 14.2 months (95% CI, 11.85-16.55 months). Only 12.5% of the progressed patients developed new symptomatic brain metastases. The overall survival (OS) data was not mature. Thirty-three (38.8%) patients had died with a median OS of 28.9 months (95% CI, 19.82-37.99 months). The median follow-up period for the survivors was 20.0 months (95% CI, 17.49-22.51 months). Of patients with PD while on afatinib, 55.3% were investigated for resistance mechanisms with exon 20 T790 M mutation detected in 42.0% of them.

    CONCLUSIONS: Afatinib is an effective first-line treatment for patients with EGFR-mutant advanced NSCLC with a good response rate and long survival, even in patients with unfavorable clinical characteristics. The side-effects of afatinib were manageable and T790 M mutation was the most common resistance mechanism causing treatment failure.

    Matched MeSH terms: Lung Neoplasms/drug therapy*
  3. Ebadi M, Buskaran K, Saifullah B, Fakurazi S, Hussein MZ
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374834 DOI: 10.3390/ijms20153764
    One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg-Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
    Matched MeSH terms: Neoplasms/drug therapy
  4. Choo SB, Saifulbahri A, Zullkifli SN, Fadzil ML, Redzuan AM, Abdullah N, et al.
    Climacteric, 2019 04;22(2):175-181.
    PMID: 30556740 DOI: 10.1080/13697137.2018.1540563
    OBJECTIVE: This study was conducted to determine the prevalence and severity of menopausal symptoms and their associated risk factors among postmenopausal breast cancer patients receiving adjuvant endocrine therapy.

    METHODS: Postmenopausal breast cancer patients on endocrine therapy were recruited at three hospitals in Malaysia. Presence and severity of menopausal symptoms were determined using the Menopause Rating Scale. Sociodemographic and clinical data were collected from medical records.

    RESULTS: A total of 192 patients participated in this study. Commonly reported symptoms were musculoskeletal pain (59.9%), physical and mental exhaustion (59.4%), and hot flushes (41.1%). Multivariate analyses indicated that increasing number of years after menopause until the start of endocrine therapy was significantly associated with less likelihood of reporting menopausal symptoms and musculoskeletal pain. Patients with primary or secondary education levels reported significantly less menopausal urogenital symptoms compared to patients with a tertiary education level. Patients using aromatase inhibitors were twice as likely to experience musculoskeletal pain compared to patients using tamoxifen (odds ratio, 2.18; 95% confidence interval, 1.06-4.50; p 

    Matched MeSH terms: Breast Neoplasms/drug therapy
  5. Lokesh BVS, Prasad YR, Shaik AB
    Infect Disord Drug Targets, 2019;19(3):310-321.
    PMID: 30556506 DOI: 10.2174/1871526519666181217120626
    BACKGROUND: Many synthetic procedures were reported till date to prepare pyrazoline derivatives. Some have published pyrazolines from different chalcone derivatives in the literature.

    OBJECTIVE: A series of new pyrazolines containing novel 2,5-dichloro-3-acetylthiophene chalcone moiety (PZT1-PZT20) have been synthesized, characterized by 1HNMR and 13CNMR and evaluated for them in vitro antitubercular activity against M. tuberculosis H37Rv strain and in vitro anticancer activity against DU-145 prostate cancer cell lines and all compounds were also screened for molecular docking studies against specific targeted protein domains.

    METHODS: All compounds were screened for potential activity against Mycobacterium tuberculosis H37Rv (MTB) strain and anticancer activity against DU-149 prostate cancer cell lines using MTT cytotoxicity assay.

    RESULTS: Among the series, compound PZT5 with 2", 4"-dichlorophenyl group at 5-position on the pyrazoline ring exhibited the most potent antitubercular activity (MIC=1.60 µg/mL) and compounds PZT2, PZT9, PZT11, PZT15, and PZT20 showed similar antitubercular activity against standard pyrazinamide (MIC=3.12 µg/mL) by broth dilution assay. PZT15 and PZT17 with 4"- pyridinyl and 2"-pyrrolyl groups on pyrazoline ring were found to exhibit better anticancer activity against DU-149 prostate cancer cell lines with IC50 values of 2.0±0.2 µg/mL and 6.0±0.3 µg/mL respectively by MTT assay. The preliminary structure-activity relationship has been summarized. The molecular docking studies with crystalline structures of enoyl acyl carrier protein reductase InhA interaction with target protein (2NSD; PDB and 3FNG; PDB) of Mycobacterium tuberculosis H37Rv (MTB) strain have also exhibited good ligand interaction and binding affinity. Ligand interaction and binding affinity were estimated using crystal structures of both types of enoyl acyl carrier protein reductase InhA (3FNG.pdb) and found to be much higher (-16.70 to - 19.20 kcal/mol) compared with pyrazinamide (-10.70 kcal/mol) as a standard target molecule. Whereas the binding affinities of six active compounds with crystal structure of other type of enoyl acyl carrier protein reductase InhA (2NSD.pdb) were much similar and higher (-9.30 to - 11.20 kcal/mole) than pyrazinamide (-11.10 kcal/mole).

    CONCLUSION: These new pyrazolines would be promising potent inhibitors of drug sensitive and drug resistant Mycobacterium tuberculosis strain and potential anticancer agents against prostate cancer and other prototypes of cancers.

    Matched MeSH terms: Prostatic Neoplasms/drug therapy
  6. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
    Matched MeSH terms: Colonic Neoplasms/drug therapy*
  7. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
    Matched MeSH terms: Neoplasms/drug therapy
  8. Hamidu A, Mokrish A, Mansor R, Razak ISA, Danmaigoro A, Jaji AZ, et al.
    Int J Nanomedicine, 2019;14:3615-3627.
    PMID: 31190815 DOI: 10.2147/IJN.S190830
    Purpose: Modified top-down procedure was successfully employed in the synthesis of aragonite nanoparticles (NPs) from cheaply available natural seawater cockle shells. This was with the aim of developing a pH-sensitive nano-carrier for effective delivery of doxorubicin (DOX) on MCF-7 breast cancer cell line. Methods: The shells were cleaned with banana pelts, ground using a mortar and pestle, and stirred vigorously on a rotary pulverizing blending machine in dodecyl dimethyl betane solution. This simple procedure avoids the use of stringent temperatures and unsafe chemicals associated with NP production. The synthesized NPs were loaded with DOX to form DOX-NPs. The free and DOX-loaded NPs were characterized for physicochemical properties using field emission scanning electron microscopy, transmission electron microscopy, zeta potential analysis, Fourier transform infrared spectroscopy, and X-ray diffraction. The release profile, cytotoxicity, and cell uptake were evaluated. Results: NPs had an average diameter of 35.50 nm, 19.3% loading content, 97% encapsulation efficiency, and a surface potential and intensity of 19.1±3.9 mV and 100%, respectively. A slow and sustained pH-specific controlled discharge profile of DOX from DOX-NPs was observed, clearly showing apoptosis/necrosis induced by DOX-NPs through endocytosis. The DOX-NPs had IC50 values 1.829, 0.902, and 1.0377 µg/mL at 24, 48, and 72 hrs, while those of DOX alone were 0.475, 0.2483, and 0.0723 µg/mL, respectively. However, even at higher concentration, no apparent toxicity was observed with the NPs, revealing their compatibility with MCF-7 cells with a viability of 92%. Conclusions: The modified method of NPs synthesis suggests the tremendous potential of the NPs as pH-sensitive nano-carriers in cancer management because of their pH targeting ability toward cancerous cells.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  9. Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, et al.
    PLoS One, 2019;14(7):e0219285.
    PMID: 31291309 DOI: 10.1371/journal.pone.0219285
    Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  10. Poh ME, Liam CK, Mun KS, Chai CS, Wong CK, Tan JL, et al.
    Thorac Cancer, 2019 09;10(9):1841-1845.
    PMID: 31350945 DOI: 10.1111/1759-7714.13156
    Adjuvant chemotherapy has long been indicated to extend survival in completely resected stage IB to IIIA non-small cell lung cancer (NSCLC). However, there is accumulating evidence that chemotherapy or chemoradiotherapy can induce epithelial-to-mesenchymal transition (EMT) in disseminated or circulating NSCLC cells. Here, we describe the first case of EMT as the cause of recurrence and metastasis in a patient with resected stage IIB lung adenosquamous carcinoma after adjuvant chemotherapy. We review the literature and explore the possible mechanisms by which EMT occurs in disseminated tumor cells (DTC) or circulating tumor cells (CTC) in response to adjuvant chemotherapy (cisplatin) as a stressor. We also explore the possible therapeutic strategies to reverse EMT in patients with recurrence. In summary, although adjuvant cisplatin-based chemotherapy in resected NSCLC does extend survival, it may lead to the adverse phenomenon of EMT in disseminated tumor cells (DTC) or circulating tumor cells (CTC) causing recurrence and metastasis.
    Matched MeSH terms: Lung Neoplasms/drug therapy*
  11. Khor PY, Mohd Aluwi MFF, Rullah K, Lam KW
    Eur J Med Chem, 2019 Dec 01;183:111704.
    PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704
    Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
    Matched MeSH terms: Neoplasms/drug therapy*
  12. Koh KC, Slavin MA, Thursky KA, Lau E, Hicks RJ, Drummond E, et al.
    Leuk Lymphoma, 2012 Oct;53(10):1889-95.
    PMID: 22448920 DOI: 10.3109/10428194.2012.677533
    Early and targeted antimicrobial therapy improves outcomes in patients with febrile neutropenia (FN). We evaluated the impact of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) on antimicrobial utilization in the management of FN. A cohort of patients with FN and hematological malignancy was identified. Cases (in whom FDG-PET was performed, n = 37) were compared with controls (in whom conventional investigations excluding FDG-PET were performed, n = 76). An underlying cause for FN was determined in 94.6% of cases, compared to 69.7% of controls. FDG-PET had a significant impact on antimicrobial utilization compared to conventional imaging (35.1% vs. 11.8%; p = 0.003), and was associated with shorter duration of liposomal amphotericin-B therapy for systemic fungal infection (median 4.0 days cases vs. 10.0 days controls; p = 0.001). Cases had a longer length of hospitalization (p = 0.016). In the management of patients with high-risk FN, FDG-PET improves diagnostic yield and allows rationalization of antifungal therapy. The impact upon healthcare costs associated with antimicrobial therapy for FN requires further evaluation.
    Matched MeSH terms: Hematologic Neoplasms/drug therapy
  13. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Brain Neoplasms/drug therapy*
  14. Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, et al.
    J Genet, 2018 Dec;97(5):1185-1194.
    PMID: 30555068
    Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
    Matched MeSH terms: Triple Negative Breast Neoplasms/drug therapy
  15. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  16. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Mol Pharm, 2018 06 04;15(6):2484-2488.
    PMID: 29762034 DOI: 10.1021/acs.molpharmaceut.8b00305
    Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
    Matched MeSH terms: Neoplasms/drug therapy
  17. Subramanian MS, Nandagopal Ms G, Amin Nordin S, Thilakavathy K, Joseph N
    Molecules, 2020 Sep 09;25(18).
    PMID: 32916777 DOI: 10.3390/molecules25184111
    Allium sativum (garlic) is widely known and is consumed as a natural prophylactic worldwide. It produces more than 200 identified chemical compounds, with more than 20 different kinds of sulfide compounds. The sulfide compounds particularly are proven to contribute to its various biological roles and pharmacological properties such as antimicrobial, antithrombotic, hypoglycemic, antitumour, and hypolipidemic. Therefore, it is often referred as disease-preventive food. Sulphur-containing compounds from A. sativum are derivatives of S-alkenyl-l-cysteine sulfoxides, ajoene molecules, thiosulfinates, sulfides, and S-allylcysteine. This review presents an overview of the water-soluble and oil-soluble sulphur based phytochemical compounds present in garlic, highlighting their mechanism of action in treating various health conditions. However, its role as a therapeutic agent should be extensively studied as it depends on factors such as the effective dosage and the suitable method of preparation.
    Matched MeSH terms: Neoplasms/drug therapy
  18. Rahim NFC, Hussin Y, Aziz MNM, Mohamad NE, Yeap SK, Masarudin MJ, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652694 DOI: 10.3390/molecules26051261
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.
    Matched MeSH terms: Colonic Neoplasms/drug therapy*
  19. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  20. Mohd-Salleh SF, Wan-Ibrahim WS, Ismail N
    Nutr Cancer, 2020;72(5):826-834.
    PMID: 31433251 DOI: 10.1080/01635581.2019.1654530
    Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
    Matched MeSH terms: Uterine Cervical Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links