Displaying publications 521 - 540 of 1125 in total

Abstract:
Sort:
  1. Habib SH, Saud HM, Kausar H
    Genet. Mol. Res., 2014;13(2):2359-67.
    PMID: 24781991 DOI: 10.4238/2014.April.3.8
    Oil palm tissues are rich in polyphenols, polysaccharides and secondary metabolites; these can co-precipitate with RNA, causing problems for downstream applications. We compared two different methods (one conventional and a kit-based method - Easy-Blue(TM) Total RNA Extraction Kit) to isolate total RNA from leaves, roots and shoot apical meristems of tissue culture derived truncated leaf syndrome somaclonal oil palm seedlings. The quality and quantity of total RNA were compared through spectrophotometry and formaldehyde gel electrophoresis. The specificity and applicability of the protocols were evaluated for downstream applications, including cDNA synthesis and RT-PCR analysis. We found that the conventional method gave higher yields of RNA but took longer, and it was contaminated with genomic DNA. This method required extra genomic DNA removal steps that further reduced the RNA yield. The kit-based method, on the other hand, produced good yields as well as well as good quality RNA, within a very short period of time from a small amount of starting material. Moreover, the RNA from the kit-based method was more suitable for synthesizing cDNA and RT-PCR amplification than the conventional method. Therefore, we conclude that the Easy-BlueTM Total RNA Extraction Kit method is suitable and superior for isolation of total RNA from oil palm leaf, root and shoot apical meristem.
    Matched MeSH terms: Plant Oils/metabolism
  2. Ezebor F, Khairuddean M, Abdullah AZ, Boey PL
    Bioresour Technol, 2014 Apr;157:254-62.
    PMID: 24561631 DOI: 10.1016/j.biortech.2014.01.110
    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Nasaruddin RR, Alam MZ, Jami MS
    Bioresour Technol, 2014 Feb;154:155-61.
    PMID: 24384322 DOI: 10.1016/j.biortech.2013.11.095
    A green technology of biodiesel production focuses on the use of enzymes as the catalyst. In enzymatic biodiesel synthesis, suitable solvent system is very essential to reduce the inhibition effects of the solvent to the enzymes. This study produced ethanol-based biodiesel from a low-cost sludge palm oil (SPO) using locally-produced Candida cylindracea lipase from fermentation of palm oil mill effluent (POME) based medium. The optimum levels of ethanol-to-SPO molar ratio and enzyme loading were found to be 4:1 and 10 U/25 g of SPO respectively with 54.4% w/w SPO yield of biodiesel and 21.7% conversion of free fatty acid (FFA) into biodiesel. Addition of tert-butanol at 2:1 tert-butanol-to-SPO molar ratio into the ethanol-solvent system increased the yield of biodiesel to 71.6% w/w SPO and conversion of FFA into biodiesel to 28.8%. The SPO and ethanol have promising potential for the production of renewable biodiesel using enzymatic-catalyzed esterification and transesterification.
    Matched MeSH terms: Plant Oils/chemistry*
  4. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
    Matched MeSH terms: Plant Oils/analysis*
  5. Mohd Sauid S, Krishnan J, Huey Ling T, Veluri MV
    Biomed Res Int, 2013;2013:409675.
    PMID: 24350269 DOI: 10.1155/2013/409675
    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
    Matched MeSH terms: Plant Oils/metabolism*
  6. Ng YG, Tamrin SB, Yik WM, Yusoff IS, Mori I
    Ind Health, 2014;52(1):78-85.
    PMID: 24292878
    Production agriculture such as harvesting in oil palm plantation has been frequently associated with MSD and significant loss of productivities. This study tends to evaluate from the viewpoint of health, the association between self-reported prevalence of musculoskeletal disorders and productivities; the impact of musculoskeletal disorders on productivity. A cross-sectional study was conducted among 143 harvesters in oil palm plantation. A general questionnaire was used to collect socio-demographic background data while Nordic Musculoskeletal Questionnaire was used to determine the prevalence of MSD. Expressed in 4 different indicators; daily harvesting quantity, efficiency score, sick leave and presenteeism, the productivity data were analysed for association. There is significant association between reported acute prevalence of MSD (within 7 d) and productivity loss in terms of presenteeism (χ(2)=5.088; p<0.05) as well as quantity of daily harvest (χ(2)=7.406; p<0.01). Logistic regression adjusted for age, BMI and smoking indicate that harvesters with MSD (past seven days) were more likely to be engaged in presenteeism (OR=2.87 95% CI=1.34, 6.14) and had lower daily productivity (OR=2.09 95% CI=1.02, 4.29) compared to harvesters without MSD (past 7 d). This study reveals that oil palm harvesters suffering acute MSD (for the past week) were likely to be still present to work and produce half lesser than their healthy counterparts. Thus, further study with comprehensive surveillance strategy is essential in order to determine the urgency or need of appropriate intervention.
    Matched MeSH terms: Plant Oils*
  7. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Plant Oils/chemistry*
  8. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM
    Carbohydr Polym, 2014 Mar 15;103:119-25.
    PMID: 24528708 DOI: 10.1016/j.carbpol.2013.11.055
    The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
    Matched MeSH terms: Plant Oils/chemistry*
  9. Chai EW, H'ng PS, Peng SH, Wan-Azha WM, Chin KL, Chow MJ, et al.
    Environ Technol, 2013 Sep-Oct;34(17-20):2859-66.
    PMID: 24527651
    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
    Matched MeSH terms: Plant Oils/chemistry
  10. Jahurul MH, Zaidul IS, Nik Norulaini NA, Sahena F, Abedin MZ, Mohamed A, et al.
    Food Chem, 2014 Jul 1;154:323-9.
    PMID: 24518349 DOI: 10.1016/j.foodchem.2013.11.098
    The blending effects of mango seed fat (MSF), extracted using supercritical fluid, and palm stearin (PS) to formulate hard cocoa butter replacers (CBRs), were investigated. The triglycerides (TG), thermal properties and solid fat content (SFC) of the formulated blends were determined using different chromatographic and thermal techniques. All the blends had three main TGs; namely, 1,3-dipalmitoyl-2-oleoylglycerol (POP) (8.6-17.7%), 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POS) (12.6-19.6%), and 1,3-distearoyl-2-oleoyl-glycerol (SOS) (37.2-31.4%), with SOS being the major component. The melting peak temperatures gradually increased and shifted towards higher temperatures with PS. The crystallization onset temperatures increased, while the offset decreased with PS. The SFC did not drop to 0% at 37.5°C, which was shifted to 0% at and above 40°C for some blends. The studies revealed that CBRs could be prepared by blending MSF and PS, and they could be utilised by chocolate manufacturers in tropical countries.
    Matched MeSH terms: Plant Oils/chemistry*
  11. Zainal-Mokhtar K, Mohamad-Saleh J
    Sensors (Basel), 2013;13(9):11385-406.
    PMID: 24064598 DOI: 10.3390/s130911385
    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
    Matched MeSH terms: Fuel Oils/analysis*
  12. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M
    Carbohydr Polym, 2013 Apr 2;93(2):628-34.
    PMID: 23499105 DOI: 10.1016/j.carbpol.2013.01.035
    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
    Matched MeSH terms: Plant Oils/chemistry*
  13. Salleh FM, Anuar TS, Yasin AM, Moktar N
    J Microbiol Methods, 2012 Oct;91(1):174-8.
    PMID: 22986100 DOI: 10.1016/j.mimet.2012.08.004
    Permanent staining of faecal smears by Wheatley's trichrome technique has been used by many scientists for the detection of parasites in the past and it was found to be highly sensitive. This study was conducted to evaluate the use of Wintergreen oil in comparison with xylene in Wheatley's trichrome staining technique, as the reference technique. In a blind comparison study, 500 collected faecal samples from aboriginal communities were examined. Wintergreen oil was found to be more superior than xylene as a clearing agent in the Wheatley's trichrome staining of polyvinyl alcohol-fixed faecal smears for the identification of intestinal protozoa. Elimination of toxic, carcinogenic, and fire hazards makes Wintergreen oil the preferred choice in routine parasitology examinations.
    Matched MeSH terms: Oils, Volatile/metabolism*
  14. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA
    Molecules, 2012 Oct 08;17(10):11729-47.
    PMID: 23044711 DOI: 10.3390/molecules171011729
    Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
    Matched MeSH terms: Plant Oils/chemistry*
  15. Noroozi M, Zakaria A, Moksin MM, Wahab ZA
    Int J Mol Sci, 2012;13(8):10350-8.
    PMID: 22949865 DOI: 10.3390/ijms130810350
    The thermal effusivity of Al(2)O(3) and CuO nanofluids in different base fluids, i.e., deionized water, ethylene glycol and olive oil were investigated. The nanofluids, nanoparticles dispersed in base fluids; were prepared by mixing Al(2)O(3), CuO nanopowder and the base fluids using sonication with high-powered pulses to ensure a good uniform dispersion of nanoparticles in the base fluids. The morphology of the particles in the base fluids was investigated by transmission electron microscopy (TEM). In this study, a phase frequency scan of the front pyroelectric configuration technique, with a thermally thick PVDF pyroelectric sensor and sample, was used to measure the thermal effusivity of the prepared nanofluids. The experimental results of the thermal effusivity of the studied solvents (deionized water, ethylene glycol and olive oil) showed good agreement with literature values, and were reduced in the presence of nanoparticles. The thermal effusivity of the nanofluid was found to be particularly sensitive to its base fluid and the type of nanoparticles.
    Matched MeSH terms: Plant Oils/chemistry
  16. Fulazzaky MA
    Bioprocess Biosyst Eng, 2013 Jan;36(1):11-21.
    PMID: 22622964 DOI: 10.1007/s00449-012-0756-7
    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.
    Matched MeSH terms: Plant Oils/metabolism*
  17. Siddique BM, Ahmad A, Alkarkhi AF, Ibrahim MH, K MO
    J Food Sci, 2011 May;76(4):C535-42.
    PMID: 22417332 DOI: 10.1111/j.1750-3841.2011.02146.x
    Candlenut oil was extracted using supercritical CO(2) (SC-CO(2)) with an optimization of parameters, by the response surface methodology. The ground candlenut samples were treated in 2 different ways, that is, dried in either a heat oven (sample moisture content of 2.91%) or dried in a vacuum oven (sample moisture content of 1.98%), before extraction. An untreated sample (moisture content of 4.87%) was used as a control. The maximum percentage of oil was extracted from the heat-oven-dried sample (77.27%), followed by the vacuum-oven-dried sample (74.32%), and the untreated sample (70.12%). At an SC-CO(2) pressure of 48.26 Mpa and 60 min of extraction time, the optimal temperatures for extraction were found to be 76.4 °C, 73.9 °C, and 70.6 °C for the untreated, heat-oven-dried, and vacuum-oven-dried samples, respectively. The heat-oven-dried sample contains the highest percentage of linoleic acid, followed by the untreated and vacuum-oven-dried samples. The antiradical activity of candlenut oil corresponded to an IC(50) value of 30.37 mg/mL.
    Matched MeSH terms: Plant Oils/chemistry*
  18. Lasekan O
    J Sci Food Agric, 2013 Mar 30;93(5):1055-61.
    PMID: 22936608 DOI: 10.1002/jsfa.5846
    Volatile compounds play a key role in determining the sensory appreciation of vegetable oils. In this study a systematic evaluation of odorants responsible for the characteristic flavour of roasted tigernut oil was carried out.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Abu Bakar NB, Makahleh A, Saad B
    Anal Chim Acta, 2012 Sep 12;742:59-66.
    PMID: 22884208 DOI: 10.1016/j.aca.2012.02.045
    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.
    Matched MeSH terms: Plant Oils/chemistry*
  20. Giita Silverajah VS, Ibrahim NA, Yunus WM, Hassan HA, Woei CB
    Int J Mol Sci, 2012;13(5):5878-98.
    PMID: 22754338 DOI: 10.3390/ijms13055878
    In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
    Matched MeSH terms: Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links