Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed.
Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (~65%) and releasing it in a controlled manner (~50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells.
Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.
METHODS: In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors.
RESULTS: The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells.
CONCLUSION: The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.