OBJECTIVE: The study aimed to investigate the effect of African walnuts (Tetracarpidium conophorum) on lipids storage and the regulatory enzymes of hepatic lipid metabolism in obese rats.
METHODS: Nuts were extracted in ethanol (WE) and further separated to obtain the ethyl-acetate fraction (ET) and the residue (RES). These were administered orally to 3 groups of monosodium glutamate- obese rats (n = 6), respectively, for 6 weeks. Other groups in the study were: normal (NC), obese control (OC) and standard control (SC) which received orlistat. Hepatic total lipids, total phospholipids, triacylglycerol (TG), total cholesterol (TCHOL), 3-hydroxyl-3-methylglutaryl-CoA (HMG-CoA) reductase and paraoxonase were studied.
RESULTS: Total lipids, TG and TCHOL which increased in OC compared to NC group, decreased. HMG-CoA reductase activity decreased in the 3 study groups relative to OC. Paraoxonase activity which decreased in OC was up-regulated, while the magnitude of hepatic cholesterol decreased from 94.32 % in OC to 52.19, 65.43 and 47.04 % with WE, ET and RES, respectively. Flavonoids, alkaloids, glycosides, tannins and saponins were detected in the nut. GC-MS analysis revealed 16, 18 and 10 volatile components in WE, ET and RES, respectively. Unsaturated fatty acids (linolenic acids: 33.33, 47.95 and 50.93 %, and α-linolenic acids: 25, 19.66 and 26.63 %) in WE, ET and RES, respectively, are the most abundant, and likely to be responsible for the observed activity.
CONCLUSION: African walnuts can prevent hepatic lipid accumulation through reciprocal actions on HMG-CoA reductase and paraoxonase in obesity.
METHODS: A total of 200 participants (n = 100 kratom users and n = 100 healthy subjects who do not use kratom) were recruited for this analytical cross-sectional study. Data on sociodemographic status, kratom use characteristics, cigarette smoking, physical activity, body mass index (BMI), fasting serum lipid profile, and liver function were collected from all participants.
RESULTS: The liver parameters of the study participants were within normal range. The serum total cholesterol and LDL of kratom users were significantly lower than those of healthy subjects who do not use kratom. There were no significant differences in the serum triglyceride and HDL levels. However, higher average daily frequency of kratom use and increasing age were associated with increased serum total cholesterol among kratom users. Other kratom use characteristics such as age of first kratom intake, duration of kratom use, and quantity of daily kratom intake were not associated with increased serum triglyceride, total cholesterol, LDL, and HDL levels.
CONCLUSIONS: Our findings suggest regular kratom consumption was not linked to elevated serum lipids, except when there is a higher frequency of daily kratom intake. However, the study was limited by the small sample size, and hence a more comprehensive study with larger sample size is warranted to confirm the findings.