Displaying publications 41 - 60 of 106 in total

Abstract:
Sort:
  1. Abdul Wahit MA, Ahmad SA, Marhaban MH, Wada C, Izhar LI
    Sensors (Basel), 2020 Jul 27;20(15).
    PMID: 32727150 DOI: 10.3390/s20154174
    Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow to replace the function of the missing anatomical segment that resembles an actual human hand. However, there are some challenging aspects faced mainly on the robot hand structural design itself. Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate motion range. Our proposed robot hand structure also took into account the existing design problems such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints compared to the actual finger in its design. This paper presents the improvements achieved by applying the proposed design such as the use of a four-bar linkage mechanism instead of using the cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where each finger is moved by motor individually, joint protection using a mechanical stopper, detachable finger structure from the palm frame, a structure that has sufficient durability for everyday use and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism is the use of the solid linkage that connects the actuator with the structure to allow the structure to move. The durability was investigated using static analysis simulation. The structural details and simulation results were validated through motion capture analysis and load test. The motion analyses towards the 3D printed robot structure show 70-98% similar motion range capability to the designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and the real test. The improved robot hand structure with optimum durability for prosthetic uses was successfully developed.
  2. Ibrahim S, Shukor MY, Syed MA, Johari WL, Shamaan NA, Sabullah MK, et al.
    J Gen Appl Microbiol, 2016;62(1):18-24.
    PMID: 26923127 DOI: 10.2323/jgam.62.18
    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.
  3. Zaini MS, Liew JYC, Alang Ahmad SA, Mohmad AR, Ahmad Kamarudin M
    ACS Omega, 2020 Dec 08;5(48):30956-30962.
    PMID: 33324803 DOI: 10.1021/acsomega.0c03768
    The existence of surface organic capping ligands on quantum dots (QDs) has limited the potential in QDs emission properties and energy band gap structure alteration as well as the carrier localization. This drawback can be addressed via depositing a thin layer of a semiconductor material on the surface of QDs. Herein, we report on the comparative study for photoluminescent (PL) properties of PbS and PbS/MnS QDs. The carrier localization effect due to the alteration of energy band gap structure and carrier recombination mechanism in the QDs were investigated via PL measurements in a temperature range of 10-300 K with the variation of the excitation power from 10 to 200 mW. For PbS QDs, the gradient of integrated PL intensity (IPL) as a function of excitation power density graph was less than unity. When the MnS shell layer was deposited onto the PbS core, the PL emission exhibited a blue shift, showing dominant carrier recombination. It was also found that the full width half-maximum showed a gradual broadening with the increasing temperature, affirming the electron-phonon interaction.
  4. Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, et al.
    3 Biotech, 2019 Feb;9(2):64.
    PMID: 30729088 DOI: 10.1007/s13205-019-1592-0
    The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.
  5. Rani E, Mohshim SA, Ahmad MZ, Goodacre R, Alang Ahmad SA, Wong LS
    Polymers (Basel), 2019 Mar 25;11(3).
    PMID: 30960545 DOI: 10.3390/polym11030561
    There is an increasing demand for lithography methods to enable the fabrication of diagnostic devices for the biomedical and agri-food sectors. In this regard, scanning probe lithography methods have emerged as a possible approach for this purpose, as they are not only convenient, robust and accessible, but also enable the deposition of "soft" materials such as complex organic molecules and biomolecules. In this report, the use of polymer pen lithography for the fabrication of DNA oligonucleotide arrays is described, together with the application of the arrays for the sensitive and selective detection of Ganoderma boninense, a fungal pathogen of the oil palm. When used in a sandwich assay format with DNA-conjugated gold nanoparticles, this system is able to generate a visually observable result in the presence of the target DNA. This assay is able to detect as little as 30 ng of Ganoderma-derived DNA without any pre-amplification and without the need for specialist laboratory equipment or training.
  6. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
  7. Zahri KNM, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    PMID: 33669826 DOI: 10.3390/ijerph18042050
    In the present age, environmental pollution is multiplying due to various anthropogenic activities. Pollution from waste cooking oil is one of the main issues facing the current human population. Scientists and researchers are seriously concerned about the oils released from various activities, including the blockage of the urban drainage system and odor issues. In addition, cooking oil is known to be harmful and may have a carcinogenic effect. It was found that current research studies and publications are growing on these topics due to environmental problems. A bibliometric analysis of studies published from 2001 to 2021 on cooking oil degradation was carried out using the Scopus database. Primarily, this analysis identified the reliability of the topic for the present-day and explored the past and present progresses of publications on various aspects, including the contributing countries, journals and keywords co-occurrence. The links and interactions between the selected subjects (journals and keywords) were further visualised using the VOSviewer software. The analysis showed that the productivity of the publications is still developing, with the most contributing country being the United States, followed by China and India with 635, 359 and 320 publications, respectively. From a total of 1915 publications, 85 publications were published in the Journal of Agricultural and Food Chemistry. Meanwhile, the second and third of the most influential journals were Bioresource Technology and Industrial Crops and Products with 76 and 70 total publications, respectively. Most importantly, the co-occurrence of the author's keywords revealed "biodegradation", "bioremediation", "vegetable oil" and "Antarctic" as the popular topics in this study area, especially from 2011 to 2015. In conclusion, this bibliometric analysis on the degradation of cooking oil may serve as guide for future avenues of research in this area of research.
  8. Wong RR, Lim ZS, Shaharuddin NA, Zulkharnain A, Gomez-Fuentes C, Ahmad SA
    PMID: 33562609 DOI: 10.3390/ijerph18041512
    Diesel acts as a main energy source to complement human activities in Antarctica. However, the increased expedition in Antarctica has threatened the environment as well as its living organisms. While more efforts on the use of renewable energy are being done, most activities in Antarctica still depend heavily on the use of diesel. Diesel contaminants in their natural state are known to be persistent, complex and toxic. The low temperature in Antarctica worsens these issues, making pollutants more significantly toxic to their environment and indigenous organisms. A bibliometric analysis had demonstrated a gradual increase in the number of studies on the microbial hydrocarbon remediation in Antarctica over the year. It was also found that these studies were dominated by those that used bacteria as remediating agents, whereas very little focus was given on fungi and microalgae. This review presents a summary of the collective and past understanding to the current findings of Antarctic microbial enzymatic degradation of hydrocarbons as well as its genotypic adaptation to the extreme low temperature.
  9. Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ
    Crit Rev Anal Chem, 2020 Nov 06.
    PMID: 33155481 DOI: 10.1080/10408347.2020.1839736
    The past several decades have seen increasing concern regarding the wide distribution of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Primary toxicological data show PAHs' persistent characteristics and possible toxicity effects. Because of this pressing global issue, electroanalytical methods have been introduced. These methods are effective for PAH determination in environmental waters, even outclassing sophisticated analytical techniques such as chromatography, conventional spectrophotometry, fluorescence, and capillary electrophoresis. Herein, the literature published on PAHs is reviewed and discussed with special regard to PAH occurrence. Moreover, the recent developments in electrochemical sensors for PAH determination and the challenges and future outlooks in this field, are also presented.
  10. Yahaya RSR, Normi YM, Phang LY, Ahmad SA, Abdullah JO, Sabri S
    Appl Microbiol Biotechnol, 2021 May;105(10):3955-3969.
    PMID: 33937928 DOI: 10.1007/s00253-021-11321-y
    Keratinase is an important enzyme that can degrade recalcitrant keratinous wastes to form beneficial recyclable keratin hydrolysates. Keratinase is not only important as an alternative to reduce environmental pollution caused by chemical treatments of keratinous wastes, but it also has industrial significance. Currently, the bioproduction of keratinase from native keratinolytic host is considered low, and this hampers large-scale usage of the enzyme. Straightforward approaches of cloning and expression of recombinant keratinases from native keratinolytic host are employed to elevate the amount of keratinase produced. However, this is still insufficient to compensate for the lack of its large-scale production to meet the industrial demands. Hence, this review aimed to highlight the various sources of keratinase and the strategies to increase its production in native keratinolytic hosts. Molecular strategies to increase the production of recombinant keratinase such as plasmid selection, promoter engineering, chromosomal integration, signal peptide and propeptide engineering, codon optimization, and glycoengineering were also described. These mentioned strategies have been utilized in heterologous expression hosts, namely, Escherichia coli, Bacillus sp., and Pichia pastoris, as they are most widely used for the heterologous propagations of keratinases to further intensify the production of recombinant keratinases adapted to better suit the large-scale demand for them. KEY POINTS: • Molecular strategies to enhance keratinase production in heterologous hosts. • Construction of a prominent keratinolytic host from a native strain. • Patent analysis of keratinase production shows rapid high interest in molecular field.
  11. Abdul Rahman K, Ahmad SA, Che Soh A, Ashari A, Wada C, Gopalai AA
    Front Public Health, 2021;9:612538.
    PMID: 33681130 DOI: 10.3389/fpubh.2021.612538
    Background: Falls are a significant incident among older adults affecting one in every three individuals aged 65 and over. Fall risk increases with age and other factors, namely instability. Recent studies on the use of fall detection devices in the Malaysian community are scarce, despite the necessity to use them. Therefore, this study aimed to investigate the association between the prevalence of falls with instability. This study also presents a survey that explores older adults' perceptions and expectations toward fall detection devices. Methods: A cross-sectional survey was conducted involving 336 community-dwelling older adults aged 50 years and older; based on randomly selected participants. Data were analyzed using quantitative descriptive analysis. Chi-square test was conducted to investigate the associations between self-reported falls with instability, demographic and walking characteristics. Additionally, older adults' perceptions and expectations concerning the use of fall detection devices in their daily lives were explored. Results: The prevalence of falls was 28.9%, where one-quarter of older adults fell at least once in the past 6 months. Participants aged 70 years and older have a higher fall percentage than other groups. The prevalence of falls was significantly associated with instability, age, and walking characteristics. Around 70% of the participants reported having instability issues, of which over half of them fell at least once within 6 months. Almost 65% of the participants have a definite interest in using a fall detection device. Survey results revealed that the most expected features for a fall detection device include: user-friendly, followed by affordably priced, and accurate. Conclusions: The prevalence of falls in community-dwelling older adults is significantly associated with instability. Positive perceptions and informative expectations will be used to develop an enhanced fall detection incorporating balance monitoring system. Our findings demonstrate the need to extend the fall detection device features aiming for fall prevention intervention.
  12. Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    Biology (Basel), 2021 Apr 22;10(5).
    PMID: 33922046 DOI: 10.3390/biology10050354
    The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
  13. Mansur R, Gusmanizar N, Roslan MA, Ahmad SA, Shukor MY
    Trop Life Sci Res, 2017 Jan;28(1):69-90.
    PMID: 28228917 MyJurnal DOI: 10.21315/tlsr2017.28.1.5
    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.
  14. Hassan IM, Wan Ibrahim WN, Yusuf FM, Ahmad SA, Ahmad S
    Pak J Pharm Sci, 2021 Jan;34(1):47-56.
    PMID: 34248002
    Diseases caused by oxidative stress can be prevented by antioxidant. Current treatments for those neurodegenerative diseases are not effective and cause many side effects. Thus, the search for alternative medicines is in high demand. Therefore, the main purposed of this study is to evaluate the neuroprotective effects of Curcuma longa (rhizome) 80% methanol extract. Antioxidant using dichlorofuoresence diacetate (DCF-DA) assay on SH-SY5Y cells revealed high activities of Curcuma longa (rhizome) extract with IC50 of 105.9±0.8 µg/mL. Sub-acute and chronic toxicity tests of the plant extract on adult Javanese medaka (Oryzias javanicus) showed high toxicity effect with LC50 of 24.15±0.8 mg/L and 13.69±0.7 mg/L respectively. Neuroprotective tests using cholinesterase assay disclose significant differences at P<0.05 between the group that are exposed to arsenic and treated with the crude extract and the group that are exposed to only arsenic. Identification of vitexin and isovitexin justified the high antioxidant potential of this plant leaf and it highest benefit to be used as medicinal supplement.
  15. Khor JZS, Gopalai AA, Lan BL, Gouwanda D, Ahmad SA
    Sci Rep, 2021 06 10;11(1):12276.
    PMID: 34112840 DOI: 10.1038/s41598-021-91422-w
    Although the application of sub-sensory mechanical noise to the soles of the feet has been shown to enhance balance, there has been no study on how the bandwidth of the noise affects balance. Here, we report a single-blind randomized controlled study on the effects of a narrow and wide bandwidth mechanical noise on healthy young subjects' sway during quiet standing on firm and compliant surfaces. For the firm surface, there was no improvement in balance for both bandwidths-this may be because the young subjects could already balance near-optimally or optimally on the surface by themselves. For the compliant surface, balance improved with the introduction of wide but not narrow bandwidth noise, and balance is improved for wide compared to narrow bandwidth noise. This could be explained using a simple model, which suggests that adding noise to a sub-threshold pressure stimulus results in markedly different frequency of nerve impulse transmitted to the brain for the narrow and wide bandwidth noise-the frequency is negligible for the former but significantly higher for the latter. Our results suggest that if a person's standing balance is not optimal (for example, due to aging), it could be improved by applying a wide bandwidth noise to the feet.
  16. Ahmad T, Ismail A, Ahmad SA, Khalil KA, Kee LT, Awad EA, et al.
    J Food Sci Technol, 2020 Oct;57(10):3772-3781.
    PMID: 32903957 DOI: 10.1007/s13197-020-04409-2
    Bovine skin was incubated with plant enzymes bromelain (B) and zingibain (Z) at the level of 0, 5, 10, 15, 20 and 25 unit/g of skin and gelatin was extracted at 60 °C for 6 h. Control gelatin was extracted without enzymatic pretreatment. The yield and gel strength were 17.90% and 283.35 g for the control samples and 22.26% and 160.88 g for B20 samples. The zingibain extracted gelatin (GEZ) samples failed to form gel. Viscosities of GEZ gelatins were significantly (P 
  17. Al-Quraishi MS, Ishak AJ, Ahmad SA, Hasan MK, Al-Qurishi M, Ghapanchizadeh H, et al.
    Med Biol Eng Comput, 2017 May;55(5):747-758.
    PMID: 27484411 DOI: 10.1007/s11517-016-1551-4
    Electromyography (EMG)-based control is the core of prostheses, orthoses, and other rehabilitation devices in recent research. Nonetheless, EMG is difficult to use as a control signal given the complex nature of the signal. To overcome this problem, the researchers employed a pattern recognition technique. EMG pattern recognition mainly involves four stages: signal detection, preprocessing feature extraction, dimensionality reduction, and classification. In particular, the success of any pattern recognition technique depends on the feature extraction stage. In this study, a modified time-domain features set and logarithmic transferred time-domain features (LTD) were evaluated and compared with other traditional time-domain features set (TTD). Three classifiers were employed to assess the two feature sets, namely linear discriminant analysis (LDA), k nearest neighborhood, and Naïve Bayes. Results indicated the superiority of the new time-domain feature set LTD, on conventional time-domain features TTD with the average classification accuracy of 97.23 %. In addition, the LDA classifier outperformed the other two classifiers considered in this study.
  18. Shair EF, Ahmad SA, Marhaban MH, Mohd Tamrin SB, Abdullah AR
    Biomed Res Int, 2017;2017:3937254.
    PMID: 28303251 DOI: 10.1155/2017/3937254
    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
  19. Yapp JH, Kamil R, Rozi M, Mohtarrudin N, Loqman MY, Ezamin AR, et al.
    J Tissue Viability, 2017 Aug;26(3):196-201.
    PMID: 28438463 DOI: 10.1016/j.jtv.2017.03.002
    Tissue recovery is important in preventing tissue deterioration, which is induced by pressure and may lead to pressure ulcers (PU). Reactive hyperaemia (RH) is an indicator used to identify people at risk of PU. In this study, the effect of different recovery times on RH trend is investigated during repetitive loading. Twenty-one male Sprague-Dawley rats (seven per group), with body weight of 385-485 g, were categorised into three groups and subjected to different recovery times with three repetitive loading cycles. The first, second, and third groups were subjected to short (3 min), moderate (10 min), and prolonged (40 min) recovery, respectively, while fixed loading time and pressure (10 min and 50 mmHg, respectively). Peak hyperaemia was measured in the three cycles to determine trends associated with different recovery times. Three RH trends (increasing, decreasing, and inconsistent) were observed. As the recovery time is increased (3 min vs. 10 min vs. 40 min), the number of samples with increasing RH trend decreases (57% vs. 29% vs. 14%) and the number of samples with inconsistent RH trend increases (29% vs. 57% vs. 72%). All groups consists of one sample with decreasing RH trend (14%). Results confirm that different recovery times affect the RH trend during repetitive loading. The RH trend may be used to determine the sufficient recovery time of an individual to avoid PU development.
  20. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links