AIM OF THE STUDY: The present study was intended to evaluate anti-cholinesterase potential of 177 Malaysian plant extracts from 148 species known to have related ethnomedicinal uses such as anti-inflammatory, anti-oxidant, anti-diabetic, epilepsy, headache, memory enhancement and anti-aging.
MATERIALS AND METHODS: Anti-cholinesterase screening against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was performed on the basis of in-vitro colorimetric 96-well microplate-based assay method. Potent active plant extracts were subjected to liquid-liquid extraction and acid-base fractionation for further analysis.
RESULTS: Fifty-seven plant extracts exhibited potent anti-cholinesterase activities (50-100% inhibition) at 200 μg/ml. Majority of the active plants originated from Fabaceae family. Coccoloba uvifera (L.) L. stem extract manifested the lowest IC50 of 3.78 μg/ml for AChE and 5.94 μg/ml for BChE. A few native species including Tetracera indica (Christm. & Panz.) Merr., Cyrtostachys renda Blume and Ixora javanica (Blume) DC. showed cholinesterase inhibition despite limited local medical applications. Further anti-AChE evaluation (50 μg/ml) of 18 potent plant extracts harbored active polar components in butanol and water fractions, except Senna pendula (Willd.) H.S.Irwin & Barneby (leaves and stems), Acacia auriculiformis Benth. (leaves), Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg (leaves), and Macaranga tanarius (L.) Mull.Arg. (leaves) that showed inhibitory activity in less polar fractions. The acidic extraction of these four plant species improved their inhibition level against AChE.
CONCLUSION: This study rendered a preliminary overview of anti-cholinesterase activity from diverse Malaysian botanical families in which provided the medical relevance toward these native plant species, especially ones with limited ethnobotanical record or practice.
AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.
MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).
RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.
CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.
Methods: Open field tests, elevated plus maze and Morris water maze were performed to assess general locomotor activity, anxiety-like behaviours and learning and memory processes respectively in rats pretreated with scopolamine.
Results: Scopolamine-treated rats showed high total activity, stereotype, and total distance travelled in the open field arena, reduced number of entries to open arms, decreased the percentage of time spent in open arms and higher escape latency time in the Morris water maze test. Interestingly, single administration of zerumbone (1 and 10 mg/kg) reversed the hyperactivity, anxiety-like behaviours, and learning impairment effects of scopolamine in the three experimental model studied respectively.
Discussion: Our findings demonstrated that the scopolamine-induced impairment of learning and memory was reversed by the administration of zerumbone. As a conclusion, our findings presented the positive effects of zerumbone on dementia-like behaviours in the animal model used and could possibly contribute for future research to manage hyperactivity, anxiety, and learning disabilities.
AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus.
METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats.
RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine.
CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.
Methods: Based on the morphine withdrawal model, rats were morphine treated with increasing doses from 10 to 50 mg/kg twice daily over a period of 6 days. The treatment was discontinued on day 7 in order to induce a spontaneous morphine abstinence. The withdrawal signs were measured daily after 24 h of the last morphine administration over a period of 28 abstinence days. In rats that developed withdrawal signs, a drug replacement treatment was given using mitragynine, methadone, or buprenorphine and the global withdrawal score was evaluated.
Results: The morphine withdrawal model induced profound withdrawal signs for 16 days. Mitragynine (5-30 mg/kg; i.p.) was able to attenuate acute withdrawal signs in morphine dependent rats. On the other hand, smaller doses of methadone (0.5-2 mg/kg; i.p.) and buprenorphine (0.4-1.6 mg/kg; i.p.) were necessary to mitigate these effects.
Conclusions: These data suggest that mitragynine may be a potential drug candidate for opiate withdrawal treatment.