Displaying publications 41 - 60 of 105 in total

Abstract:
Sort:
  1. Nawaz S, Ahmad M, Asif S, Klemeš JJ, Mubashir M, Munir M, et al.
    Bioresour Technol, 2022 Jan;343:126068.
    PMID: 34626762 DOI: 10.1016/j.biortech.2021.126068
    The efforts have been made to review phyllosilicate derived (clay-based) heterogeneous catalysts for biodiesel production via lignocellulose derived feedstocks. These catalysts have many practical and potential applications in green catalysis. Phyllosilicate derived heterogeneous catalysts (modified via any of these approaches like acid activated clays, ion exchanged clays and layered double hydroxides) exhibits excellent catalytic activity for producing cost effective and high yield biodiesel. The combination of different protocols (intercalated catalysts, ion exchanged catalysts, acidic activated clay catalysts, clay-supported catalysts, composites and hybrids, pillared interlayer clay catalysts, and hierarchically structured catalysts) was implemented so as to achieve the synergetic effects (acidic-basic) in resultant material (catalyst) for efficient conversion of lignocellulose derived feedstock (non-edible oils) to biodiesel. Utilisation of these Phyllosilicate derived catalysts will pave path for future researchers to investigate the cost-effective, accessible and improved approaches in synthesising novel catalysts that could be used for converting lignocellulosic biomass to eco-friendly biodiesel.
  2. Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, Calleja-González M, Lim HR, Khoo KS, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132550.
    PMID: 34656622 DOI: 10.1016/j.chemosphere.2021.132550
    The final disposal of waste generated by human activities has been turned into a great challenge; until now, little attention has been paid to organic waste, particularly from the restaurant sector. This work describes the process of obtaining calcium carbonate contained in oyster and clam shells re-collected in seafood restaurants. The IR absorption spectra of all the samples revealed the presence of characteristic bands of the carbonate group located at 872, 712 and 1414 cm-1; the peak at 1081 cm-1 of the clamshells confirms the presence of the aragonite phase. The SEM images allow observing a granular morphology whose agglomerates having a size within the range of 0.5-15 μm in brown shells, and a lower dispersion prevails in the grey species and oyster shells that go from 0.3 to 5.9 μm. All of the shells were found to be composed of carbon (C), oxygen (O2) and calcium (Ca) in different concentrations. The calcium carbonate obtained from clamshells has an orthorhombic crystalline structure, while the oyster carbonate has a rhombohedral structure as the calcium carbonate used in the construction industry; the morphology particles also coincide with each other. The material obtained combined with a mixture composed of resin, cellulose, and granules were used to prepare a paste, which was used as a residential finish.
  3. Saravanan A, Senthil Kumar P, Khoo KS, Show PL, Femina Carolin C, Fetcia Jackulin C, et al.
    Bioresour Technol, 2021 Dec;342:126021.
    PMID: 34600315 DOI: 10.1016/j.biortech.2021.126021
    Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.
  4. Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, et al.
    Chemosphere, 2022 Jan;287(Pt 4):132369.
    PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369
    Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
  5. Cai Y, Lim HR, Khoo KS, Ng HS, Cai Y, Wang J, et al.
    Food Chem Toxicol, 2021 Dec;158:112607.
    PMID: 34653554 DOI: 10.1016/j.fct.2021.112607
    Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.
  6. Waheed H, Farrukh S, Hussain A, Mukhtar A, Mubashir M, Saqib S, et al.
    Food Chem Toxicol, 2022 Feb;160:112773.
    PMID: 34953965 DOI: 10.1016/j.fct.2021.112773
    In hemodialysis process, membrane serves as a barrier between blood and the dialysate. The barrier when contacted by blood accompanied activation of coagulation, immunity, and cellular passageways. In the recent years, hemodialysis membrane's biocompatibility has become a issue which leads to reduce the performance during the separation process. In previous work, we developed and evaluated a cellulose-based membrane blended with polyaziridine or polyetyleneimine in formic acid for hydrophilicity, pure water flux, surface morphology, and permeation efficiency. Biocompatibility was accessed, by conducting cellular viability and cellular attachments tests. In this study, the membrane compared to a non-treated control, and cell viability revealed active and growing cell cultures after 14 days. During the cellular attachment experiment, cell cultures attached to the fabricated membrane simulated the formation of cell junctions, proving that the membrane is non-toxic and biocompatible. CA + PEI + FA membrane tested with a blood mimic fluid having density identical to renal patient's blood. The BSA concentration in the feed solution was the same as that in the blood of the renal patient. The results revealed that the CA + PEI + FA membrane was able to reject 99% bovine serum albumin (BSA) and 69.6% urea. Therefore, from biocompatibility and blood mimic fluid testing, it is confirmed that the CA + PEI + FA membrane is the finest implant for dialysis applications.
  7. Qureshi S, Mumtaz M, Chong FK, Mukhtar A, Saqib S, Ullah S, et al.
    Chemosphere, 2022 Mar;291(Pt 3):132806.
    PMID: 34780730 DOI: 10.1016/j.chemosphere.2021.132806
    One of the most significant chemical operations in the past century was the Haber-Bosch catalytic synthesis of ammonia, a fertilizer vital to human life. Many catalysts are developed for effective route of ammonia synthesis. The major challenges are to reduce temperature and pressure of process and to improve conversion of reactants produce green ammonia. The present review, briefly discusses the evolution of ammonia synthesis and current advances in nanocatalyst development. There are promising new ammonia synthesis catalysts of different morphology as well as magnetic nanoparticles and nanowires that could replace conventional Fused-Fe and Promoted-Ru catalysts in existing ammonia synthesis plants. These magnetic nanocatalyst could be basis for the production of magnetically induced one-step green ammonia and urea synthesis processes in future.
  8. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
  9. Chong JWR, Khoo KS, Chew KW, Vo DN, Balakrishnan D, Banat F, et al.
    Bioresour Technol, 2023 Feb;369:128418.
    PMID: 36470491 DOI: 10.1016/j.biortech.2022.128418
    The identification of microalgae species is an important tool in scientific research and commercial application to prevent harmful algae blooms (HABs) and recognizing potential microalgae strains for the bioaccumulation of valuable bioactive ingredients. The aim of this study is to incorporate rapid, high-accuracy, reliable, low-cost, simple, and state-of-the-art identification methods. Thus, increasing the possibility for the development of potential recognition applications, that could identify toxic-producing and valuable microalgae strains. Recently, deep learning (DL) has brought the study of microalgae species identification to a much higher depth of efficiency and accuracy. In doing so, this review paper emphasizes the significance of microalgae identification, and various forms of machine learning algorithms for image classification, followed by image pre-processing techniques, feature extraction, and selection for further classification accuracy. Future prospects over the challenges and improvements of potential DL classification model development, application in microalgae recognition, and image capturing technologies are discussed accordingly.
  10. Khan RA, Khan NA, El Morabet R, Alsubih M, Khan AR, Khan S, et al.
    Environ Res, 2023 Jan 01;216(Pt 1):114437.
    PMID: 36181898 DOI: 10.1016/j.envres.2022.114437
    Pharmaceutical compounds being able to alter, retard, and enhance metabolism has gained attention in recent time as emerging pollutant. However, hospitals which are part of every urban landscape have yet to gain attention in terms of its hospital wastewater treatment to inhibit pharmaceutical compounds from reaching environment. Hence this study evaluated performance of constructed wetland in combination with tubesettler and aeration based on removal efficiency and ecological risk assessment (HQ). The removal efficiency of constructed wetland with plantation was higher by 31% (paracetamol), 102% (ibuprofen), 46%, (carbamazepine), 57% (lorazepam), 54% (erythromycin), 31% (ciprofloxacin) and 20% (simvastatin) against constructed wetland without plantation. Constructed wetland with aeration efficiency increased for paracetamol, ibuprofen, carbamazepine, lorazepam, erythromycin, ciprofloxacin, and simvastatin removal efficiency were higher by 58%, 130%, 52%, 79%, 107%, 57%, and 29% respectively. In constructed wetland with plantation, removal efficiency was higher by 20% (paracetamol), 13% (ibuprofen), 4% (carbamazepine), 14% (lorazepam), 34% (erythromycin), 19% (ciprofloxacin) and 7% (simvastatin). High ecological risk was observed for algae, invertebrate and fish with hazard quotient values in range of 2.5-484, 10-631 and 1-78 respectively. This study concludes that if space is the limitation at hospitals aeration with constructed wetland can be adopted. If space is available, constructed wetland with tubesettler is suitable, economic and environmentally friendly option. Future research works can focus on evaluating other processes combination with constructed wetland.
  11. Sarwar B, Khan AU, Aslam M, Bokhari A, Mubashir M, Alothman AA, et al.
    Environ Res, 2023 Mar 01;220:115168.
    PMID: 36584838 DOI: 10.1016/j.envres.2022.115168
    The inherent toxicity, mutagenicity and carcinogenicity of dyes that are discharged into aquatic ecosystems, harming the health of humans and animals. ZIF-8 based composites are regarded as good adsorbents for the breakdown of dyes in order to remove or degrade them. In the course of this research, metal-organic framework materials known as ZIF-8 and its two stable composites, ZIF-8/BiCoO3 (MZBC) and ZIF-8/BiYO3 (MZBY), were produced via a hydrothermal process and solvothermal process, respectively, for the dangerous Congo red (CR) dye removal from the solution in water using adsorption method. According to the findings, the most significant amount of CR dye that could be adsorbed is onto MZBC, followed by MZBY and ZIF-8. The pseudo-second-order kinetic model was used effectively to match the data for adsorption behavior and was confirmed using the Langmuir isotherm equation. There is a possibility that the pH and amount of adsorbent might influence the adsorption behavior of the adsorbents. According to the experiment results, the technique featured an endothermic adsorption reaction that spontaneously occurred. The higher adsorption capability of MZBC is because of the large surface area. This results in strong interactions between the functional groups on the surface of MZBC and CR dye molecules. In addition to the electrostatic connection between functional group Zn-O-H on the surface of ZIF-8 in MZBC and the -NH2 or SO3 functional group areas in CR molecules, it also includes the strong π-π interaction of biphenyl rings.
  12. Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, et al.
    Environ Res, 2023 Mar 15;221:115326.
    PMID: 36690243 DOI: 10.1016/j.envres.2023.115326
    Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
  13. Zhi Ling RL, Kong LK, Lim LH, Teo SS, Ng HS, Lan JC, et al.
    Environ Res, 2023 Feb 01;218:115013.
    PMID: 36495970 DOI: 10.1016/j.envres.2022.115013
    Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.
  14. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
  15. Ahmad I, Abdullah N, Koji I, Yuzir A, Ahmad MD, Rachmadona N, et al.
    Chemosphere, 2023 Jun;325:138236.
    PMID: 36868419 DOI: 10.1016/j.chemosphere.2023.138236
    The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.
  16. Khoo KS, Nadesalingam KDT, Ong DB, Teoh LY, Teh MS, Jamaris S, et al.
    Case Rep Surg, 2023;2023:3114843.
    PMID: 36999167 DOI: 10.1155/2023/3114843
    Metastatic lesions to the breast from extramammary malignant neoplasms are rare and reported account for 0.5-6.6% of all breast malignancies. Distant metastasis of thymoma is even rarer, especially to extrathoracic regions. We reported a woman with invasive malignant thymoma postneoadjuvant and resection of the thymoma, who developed breast metastasis 7 years later. Breast imaging showed high-density lesion with no intralesional microcalcifications and no significant axillary lymphadenopathy. Core biopsy and histopathology proved the lesion to be metastatic thymic carcinoma. Despite rarity, breast lumps with underlying extramammary malignancy should raise the suspicious of breast metastasis.
  17. Yadav S, Kataria N, Khyalia P, Rose PK, Mukherjee S, Sabherwal H, et al.
    Chemosphere, 2023 Jun;326:138495.
    PMID: 36963588 DOI: 10.1016/j.chemosphere.2023.138495
    Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.
  18. Suresh R, Gnanasekaran L, Rajendran S, Jalil AA, Soto-Moscoso M, Khoo KS, et al.
    Chemosphere, 2023 Dec;343:140173.
    PMID: 37714490 DOI: 10.1016/j.chemosphere.2023.140173
    The production of low-cost solid adsorbents for carbon dioxide (CO2) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects.
  19. Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, et al.
    Mol Biotechnol, 2024 Mar;66(3):402-423.
    PMID: 37270443 DOI: 10.1007/s12033-023-00768-1
    The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
  20. Navabshan I, Sakthivel B, Pandiyan R, Antoniraj MG, Dharmaraj S, Ashokkumar V, et al.
    Mol Biotechnol, 2021 Oct;63(10):898-908.
    PMID: 34159564 DOI: 10.1007/s12033-021-00358-z
    New pandemic infection of coronaviridae family virus spread to more than 210 countries with total infection of 1,136,851 and 62,955 (4.6%) deaths until 5th April 2020. Which stopped the regular cycle of humankind but the nature is consistently running. There is no micro molecule remedy found yet to restore the regular life of people. Hence, we decided to work on natural biophores against the COVID proteins. As a first step, major phytoconstituents of antiviral herbs like Leucas aspera, Morinda citrifolia, Azadirachta indica, Curcuma longa, Piper nigrum, Ocimum tenuiflorum, and Corallium rubrum collected and performed the lock and key analysis with major spike protein of COVID-19 to find the best fitting lead biophore using computational drug design platform. The results of protocol run showed, phytoconstituents of Morinda citrifolia and Leucas aspera were found lower binding energy range of - 55.18 to - 25.34 kcal/mol, respectively and compared with Hydroxychloroquine (HCQ) (- 24.29 kcal/mol) and Remdesivir (- 25.38 kcal/mol). The results conclude that, core skeletons chromen, anthracene 9, 11 dione and long-chain alkyl acids/ester-containing biophores showen high stable antagonistic affinity with S-protein. Which leads the breakdown of spike protein and ACE2 receptor complex formation and host mechanism of corono virus. In addition, the dynamic trajectory analysis confirmed the complete denaturation of spike protein by the molecule 4-(24-hydroxy-1-oxo-5-n-propyltetracosanyl)-phenol from Leucas aspera and stability of spike-ligand complex. These biophores will aid the researcher to fabricate new promising analogue and being recommended to assess its COVID-19 treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links