Displaying publications 41 - 60 of 128 in total

Abstract:
Sort:
  1. Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, et al.
    Bioengineered, 2020 12;11(1):116-129.
    PMID: 31909681 DOI: 10.1080/21655979.2020.1711626
    The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
  2. Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW
    J Tissue Eng Regen Med, 2019 Mar;13(3):369-384.
    PMID: 30550638 DOI: 10.1002/term.2786
    Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
  3. Syazwan SA, Lee SY, Sajap AS, Lau WH, Omar D, Mohamed R
    Biology (Basel), 2021 Mar 25;10(4).
    PMID: 33806225 DOI: 10.3390/biology10040263
    Metarhizium anisopliae (Metchnikoff) Sorokin, a pathogenic fungus to insects, infects the subterranean termite, Coptotermes curvignathus Holmgren, a devastating pest of plantation trees in the tropics. Electron microscopy and proteomics were used to investigate the infection and developmental process of M. anisopliae in C. curvignathus. Fungal infection was initiated by germ tube penetration through the host's cuticle as observed at 6 h post-inoculation (PI), after which it elongated into the host's integumental tissue. The colonization process continued as seen from dissemination of blastospores in the hemocoel at 96 h PI. At this time point, the emergent mycelia had mummified the host and forty-eight hours later, new conidia were dispersed on the termites' body surface. Meanwhile, hyphal bodies were observed in abundance in the intercellular space in the host's body. The proteomes of the pathogen and host were isolated separately using inoculated termite samples withdrawn at each PI-time point and analyzed in two-dimensional electrophoresis (2-DE) gels. Proteins expressed in termites showed evidence of being related to cell regulation and the immune response, while those expressed in M. anisopliae, to transportation and fungal virulence. This study provides new information on the interaction between termites and its entomopathogen, with potential utilization for developing future biopesticide to control the termite population.
  4. Kwan MK, Lee SY, Ch'ng PY, Chung WH, Chiu CK, Chan CYW
    Spine (Phila Pa 1976), 2020 Jun 15;45(12):E694-E703.
    PMID: 32032325 DOI: 10.1097/BRS.0000000000003407
    STUDY DESIGN: Retrospective study.

    OBJECTIVE: To investigate the relationship between a +ve postoperative Upper Instrumented Vertebra (UIV) (≥0°) tilt angle and the risk of medial shoulder/neck and lateral shoulder imbalance among Lenke 1 and 2 Adolescent Idiopathic Scoliosis (AIS) patients following Posterior Spinal Fusion.

    SUMMARY OF BACKGROUND DATA: Current UIV selection strategy has poor correlation with postoperative shoulder balance. The relationship between a +ve postoperative UIV tilt angle and the risk of postoperative shoulder and neck imbalance was unknown.

    METHODS: One hundred thirty-six Lenke 1 and 2 AIS patients with minimum 2 years follow-up were recruited. For medial shoulder and neck balance, patients were categorized into positive (+ve) imbalance (≥+4°), balanced, or negative (-ve) imbalance (≤-4°) groups based on T1 tilt angle/Cervical Axis measurement. For lateral shoulder balance, patients were classified into +ve imbalance (≥+3°) balanced, and -ve imbalance (≤-3°) groups based on Clavicle Angle (Cla-A) measurement. Linear regression analysis identified the predictive factors for shoulder/neck imbalance. Logistic regression analysis calculated the odds ratio of shoulder/neck imbalance for patients with +ve postoperative UIV tilt angle.

    RESULTS: Postoperative UIV tilt angle and preoperative T1 tilt angle were predictive of +ve medial shoulder imbalance. Postoperative UIV tilt angle and postoperative PT correction were predictive of +ve neck imbalance. Approximately 51.6% of patients with +ve medial shoulder imbalance had +ve postoperative UIV tilt angle. Patients with +ve postoperative UIV tilt angle had 14.9 times increased odds of developing +ve medial shoulder imbalance and 3.3 times increased odds of developing +ve neck imbalance. Postoperative UIV tilt angle did not predict lateral shoulder imbalance.

    CONCLUSION: Patients with +ve postoperative UIV tilt angle had 14.9 times increased odds of developing +ve medial shoulder imbalance (T1 tilt angle ≥+4°) and 3.3 times increased odds of developing +ve neck imbalance (cervical axis ≥+4°).

    LEVEL OF EVIDENCE: 4.

  5. Chen J, Lee SY, Munugoda KD, Mohamed R, Subasinghe SMCUP, Liao W
    Mitochondrial DNA B Resour, 2021 May 19;6(6):1699-1701.
    PMID: 34104743 DOI: 10.1080/23802359.2021.1926362
    Gyrinops walla is an important agarwood-producing tree and threatened species from Sri Lanka. Herein, we assembled and characterized the complete chloroplast (cp) genome of G. walla as a genomic resource for conservation purposes. The 175,130 bp long genome is comprised of 87,376 bp large single-copy (LSC) and 3316 bp small single-copy (SSC) regions, which are separated by two inverted repeat (IR) region, each with a size of 42,291 bp. A total of 140 genes were predicted for the cp genome, which includes 94 protein-coding, 38 tRNA, and eight rRNA genes. Phylogenetic analysis showed that G. walla is fully resolved in a sister position to Aquilaria in the family Thymelaeaceae. The data provided will be useful for study on the molecular phylogenetics and evolution of Thymelaeaceae in the future.
  6. Ngadni MA, Akhtar MT, Ismail IS, Norazhar AI, Lee SY, Maulidiani M, et al.
    Molecules, 2021 Jul 07;26(14).
    PMID: 34299411 DOI: 10.3390/molecules26144137
    Clitorea ternatea has been used in Ayurvedic medicine as a brain stimulant to treat mental illnesses and mental functional disorders. In this study, the metabolite profiles of crude C. ternatea root extract (CTRE), ethyl acetate (EA), and 50% aqueous methanol (50% MeOH) fractions were investigated using ultrahigh-performance liquid chromatography-diode array detector-tandem mass spectrometry (UHPLC-DAD-MS/MS), while their effect on the stress-like behavior of zebrafish, pharmacologically induced with reserpine, was investigated. A total of 32 compounds were putatively identified, among which, a series of norneolignans, clitorienolactones, and various flavonoids (flavone, flavonol, isoflavone, and isoflavanone) was found to comprise the major constituents, particularly in the EA and 50% MeOH fractions. The clitorienolactones, presently unique to the species, were present in both the free and glycosylated forms in the roots. Both the EA and 50% MeOH fractions displayed moderate effects on the stress-induced zebrafish model, significantly decreasing freezing duration and elevating the total distance travelled and average velocity, 72 h post-treatment. The results of the present study provide further evidence that the basis for the use of C. ternatea roots in traditional medicine to alleviate brain-related conditions, such as stress and depression, is attributable to the presence of clitorienolactones and the isoflavonoidal constituents.
  7. Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AGA
    J Pharm Sci, 2017 01;106(1):377-384.
    PMID: 27522920 DOI: 10.1016/j.xphs.2016.06.028
    Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.
  8. Lee SY, Mediani A, Maulidiani M, Khatib A, Ismail IS, Zawawi N, et al.
    J Sci Food Agric, 2018 Jan;98(1):240-252.
    PMID: 28580581 DOI: 10.1002/jsfa.8462
    BACKGROUND: Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis.

    RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities.

    CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.

  9. Kim SH, Tan KL, Lee SY, Kim DW, Shin S, Jin HR
    Springerplus, 2016;5(1):2116.
    PMID: 28090430 DOI: 10.1186/s40064-016-3679-y
    This study investigated on bacterial contamination of the rhinoplasty field. The effect of preoperative chlorhexidine treatment on decreasing bacterial contamination in the rhinoplasty field is examined.
  10. Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, et al.
    Bioresour Technol, 2019 Sep;288:121606.
    PMID: 31178260 DOI: 10.1016/j.biortech.2019.121606
    Haematococcus pluvialis is one of the most abundant sources of natural astaxanthin as compared to others microorganism. Therefore, it is important to understand the biorefinery of astaxanthin from H. pluvialis, starting from the cultivation stage to the downstream processing of astaxanthin. The present review begins with an introduction of cellular morphologies and life cycle of H. pluvialis from green vegetative motile stage to red non-motile haematocyst stage. Subsequently, the conventional biorefinery methods (e.g., mechanical disruption, solvent extraction, direct extraction using vegetable oils, and enhanced solvent extraction) and recent advanced biorefinery techniques (e.g., supercritical CO2 extraction, magnetic-assisted extraction, ionic liquids extraction, and supramolecular solvent extraction) were presented and evaluated. Moreover, future prospect and challenges were highlighted to provide a useful guide for future development of biorefinery of astaxanthin from H. pluvialis. The review aims to serve as a present knowledge for researchers dealing with the bioproduction of astaxanthin from H. pluvialis.
  11. Che Zain MS, Yeoh JX, Lee SY, Afzan A, Shaari K
    Antioxidants (Basel), 2021 Nov 12;10(11).
    PMID: 34829674 DOI: 10.3390/antiox10111802
    Huge quantities of oil palm (Elaeis guineensis Jacq.) leaves (OPL) are generated as agricultural biomass from oil palm plantations. OPL are known to contain significant amounts of flavonoids. For maximal exploitation of these valuable antioxidant compounds, an innovative and sustainable extraction method employing natural deep eutectic solvents (NaDES) combined with ultrasonic assisted extraction was developed. Various NaDES composed of choline chloride as the hydrogen bond donor (HBD) and 1,2 propanediol (PD), 1,4 butanediol (BD), glycerol (GLY), glucose (GLU), maltose (MAL), and lactic acid (LA) as the hydrogen bond acceptor (HBA) were synthesized. The influence of these compositions, the methods of their synthesis, molar ratios, and water contents on their capacity to extract flavonoids from OPL was evaluated. Based on the results, it was found that methods which incorporate a heating step produced NaDES with the best capacity to extract OPL flavonoids. These thermal methods combined with molar ratios of 1:3 or 1:4 and water contents of 17 to 50% were found to be the optimal conditions for preparing NaDES, specifically when applied to the PD, BD, and GLY NaDES. Subsequently, UHPLC-UV/PDA-MS/MS analysis revealed NaDES extracts recovered by macroporous adsorption resin XAD7HP were able to optimally extract at least twelve luteolin and apigenin derivatives in OPL NaDES extracts prepared from glycerol and 1,4-butanediol demonstrated better and comparable efficiency as aqueous methanol in extracting flavonoids from OPL. The in vitro studies of antioxidant and wound healing properties supported these findings by exhibiting good free radical scavenging, cell proliferation, and migration activities. Additionally, the NaDES extracts also showed non-cytotoxicity effects at 1000 µg/mL and below on 3T3 fibroblast cells. Results of the study showed that NaDES could be a promising eco-friendly green solvent to extract bioactive OPL flavonoids that have great potential for applications as wound healing agents.
  12. Hamidi EN, Hajeb P, Selamat J, Lee SY, Abdull Razis AF
    PMID: 35055557 DOI: 10.3390/ijerph19020736
    Exposure to polycyclic aromatic hydrocarbons (PAHs) through diet is gaining concern due to the risk it poses to human health. This study evaluated the bioaccessibility of PAHs contained in charcoal-grilled beef and chicken in different segments of the gastrointestinal tract (GIT) with regard to the degree of doneness and fat content of the meats. The levels of 15 PAHs in the grilled meat samples and bioaccessible fractions were determined using high-performance liquid chromatography (HPLC) equipped with PAH column, and UV and fluorescence detectors. Total PAHs were found in beef (30.73 ng/g) and chicken (70.93 ng/g) before its digestion, and different PAHs' bioaccessibility were observed in the different segments of GIT, with the highest in the stomach followed by the small intestine, despite the relatively higher bioaccessibility of individual PAHs in grilled beef as compared to those in grilled chicken. Additionally, the PAHs' bioaccessibility increased with the increase in the degree of doneness. Positive linear correlation was observed for the PAHs' bioaccessibility and the fat contents of grilled meat. Overall, this study highlights the influence of meat doneness (cooking time) and fat contents on the bioaccessibility and bioaccumulation of PAHs.
  13. Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC
    Bioresour Technol, 2018 Feb;250:306-316.
    PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050
    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
  14. van de Merwe JP, Hodge M, Olszowy HA, Whittier JM, Ibrahim K, Lee SY
    Environ Health Perspect, 2009 Sep;117(9):1397-401.
    PMID: 19750104 DOI: 10.1289/ehp.0900813
    Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications.
  15. Sudmoon R, Kaewdaungdee S, Tanee T, Siripiyasing P, Ameamsri U, Syazwan SA, et al.
    Sci Rep, 2022 Nov 05;12(1):18810.
    PMID: 36335203 DOI: 10.1038/s41598-022-23639-2
    To expand the genomic information of Hypericaceae, particularly on Cratoxylum, we characterized seven novel complete plastid genomes (plastomes) of five Cratoxylum and two of its allied taxa, including C. arborescens, C. formosum subsp. formosum, C. formosum subsp. pruniflorum, C. maingayi, C. sumatranum, Hypericum hookerianum, and Triadenum breviflorum. For Cratoxylum, the plastomes ranged from 156,962 to 157,792 bp in length. Genomic structure and gene contents were observed in the five plastomes, and were comprised of 128-129 genes, which includes 83-84 protein-coding (CDS), 37 tRNA, and eight rRNA genes. The plastomes of H. hookerianum and T. breviflorum were 138,260 bp and 167,693 bp, respectively. A total of 110 and 127 genes included 72 and 82 CDS, 34 and 37 tRNA, as well as four and eight rRNA genes. The reconstruction of the phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) trees based on the concatenated CDS and internal transcribed spacer (ITS) sequences that were analyzed separately have revealed the same topology structure at genus level; Cratoxylum is monophyletic. However, C. formosum subsp. pruniflorum was not clustered together with its origin, raising doubt that it should be treated as a distinct species, C. pruniflorum based on molecular evidence that was supported by morphological descriptions.
  16. Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH
    Int J Nanomedicine, 2022;17:6723-6758.
    PMID: 36600878 DOI: 10.2147/IJN.S362144
    Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
  17. Chan CYW, Ch'ng PY, Lee SY, Chung WH, Chiu CK, Kwan MK
    Global Spine J, 2023 Mar;13(2):443-450.
    PMID: 33691529 DOI: 10.1177/2192568221998642
    STUDY DESIGN: Retrospective.

    PURPOSE: To evaluate the relationship between shoulder/ neck imbalance with distal adding-on phenomenon and to identify other risk factors in Lenke 1 and 2 (non-AR curves) adolescent idiopathic scoliosis (AIS) patients.

    METHODS: 100 Lenke 1 and 2 AIS patients with lowest instrumented vertebra (LIV) cephalad to or at L1 were recruited. Medial shoulder/ neck balance was represented by T1-tilt and cervical axis (CA). Lateral shoulder balance was represented by clavicle angle (Cla-A) and radiographic shoulder height (RSH). Distal adding-on phenomenon was diagnosed when there was disc wedging below LIV of >5o at final follow-up. Predictive factors and odds ratio were derived using univariate and multivariate logistic regression analysis.

    RESULTS: Mean age of this cohort was 15.9 ± 4.4 years. Mean follow-up duration was 30.9 ± 9.6 months. Distal adding-on phenomenon occurred in 19 patients (19.0%). Only Risser grade, preoperative CA and final follow-up lumbar Cobb angle were the independent factors. A positive preoperative CA deviation increased the odds of distal adding-on by 5.4 times (95% CI 1.34-21.51, P = 0.018). The mean immediate postoperative T1-tilt, CA, RSH and Cla-A were comparable between the group with distal adding-on and the group without.

    CONCLUSION: Distal adding-on phenomenon occurred in 19.0% of patients. Preoperative "Cervical Axis" was an important factor and it increased the risk of distal adding-on by 5.4 times. Other significant predictive factors were Risser grade and lumbar Cobb angle at final follow-up. Immediate postoperative shoulder or neck imbalance was not a significant factor for postoperative distal adding-on phenomenon.

  18. Chen JR, Lee SY, Guo JQ, Jin JH, Fan Q, Liao WB
    PhytoKeys, 2022;213:67-78.
    PMID: 36762252 DOI: 10.3897/phytokeys.213.91116
    A new species, Wikstroemiafragrans (Thymelaeaceae, Daphneae), from Danxiashan National Park, Shaoguan, Guangdong of China is described and illustrated. It is similar to the sympatric W.trichotoma, but can be differentiated easily from the latter by its shorter racemose inflorescences, yellowish green calyx tube, and smaller leaves. It also resembles the allopatric W.fargesii, but differs from it by its strigose-pubescent ovary and disk scale that is 2- or 3-dentate apically. Phylogenetic analysis using the nuclear DNA internal transcribed spacer (ITS) region revealed that W.fragrans falls within the Wikstroemia clade; based on current sampling, W.fragrans is closely-related to W.capitata. It is also the first species of Wikstroemia known to be endemic to the Danxia landform and is classified provisionally as Critically Endangered according to the IUCN Red List Categories and Criteria.
  19. Zeng N, Gao W, Chen Z, Chong JY, Lee SY, Xu G
    Mitochondrial DNA B Resour, 2024;9(4):465-469.
    PMID: 38591052 DOI: 10.1080/23802359.2024.2316069
    Strobilanthes dalzielii of Acanthaceae is an herb species with potentially extensive applications for its pharmaceutical and ornamental values. Due to taxonomic complications and limited genetic information, the structural characteristics, and phylogenetic relationships of the S. dalzielii chloroplast genome were assembled and characterized here for the first time. The complete chloroplast genome of S. dalzielii was 144,580 bp in length. The genome is quadripartite in structure and consists of a large single-copy region (92,137 bp) and a small single-copy region (17,669 bp), which are separated by a pair of inverted repeats (each 17,387 bp). A total of 125 genes were annotated, including 80 protein-coding, 37 transfer RNA, and eight ribosomal RNA genes. The overall GC content was 36.4%. Phylogenetic analysis based on the complete chloroplast genome sequence of 21 taxa within the tribe Ruellieae of Acanthaceae using the maximum likelihood and Bayesian inference methods revealed that Strobilanthes diverged after Ruellia; S. dalzielii is closely related to S. tonkinensis. The genomic data obtained from this study will serve as valuable information to the species delimitation and genetic classification of Strobilanthes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links