Displaying publications 41 - 60 of 268 in total

Abstract:
Sort:
  1. Park JY, Lin F, Suwanchinda A, Wanitphakdeedecha R, Yu J, Lim TS, et al.
    J Clin Aesthet Dermatol, 2021 May;14(5):E70-E79.
    PMID: 34188753
    BACKGROUND: Noninvasive facial-rejuvenation devices, such as nonablative radiofrequency (RF) and laser-assisted technology, are increasingly replacing higher-risk surgeries for face and body skin laxity. OBJECTIVE: We sought to review published information on noninvasive energy device safety and efficacy in aesthetic skin tightening, compare these with our experiences in Asian patients, and disseminate a consensus for optimizing microfocused ultrasound with visualization (MFU-V) in Asian patients. METHODS: A broad, nonexhaustive, nonsystematic literature search of published studies indexed in PubMed was performed to compare selected energy technologies to MFU-V for noninvasive face and body skin tightening, in particular, among Asian patients. This was supplemented with internal documents to provide evidence and support arguments if no peer-reviewed data were available. RESULTS: We highlighted the differences between devices and platforms and identified factors requiring attention and caution. Due to the increase in new devices lacking strong supporting clinical evidence of both safety and efficacy in Asia, it is necessary to convene physicians with substantial experience in MFU-V and devise a consensus on Asian patient selection, treatment planning, and customization. CONCLUSION: Many platforms duplicate or claim similar technologies, efficacy, or safety without significant peer-reviewed scientific or clinical evidence. We showed that MFU-V satisfies this clinical imperative. Further, the patented DeepSEE® technology allows users to noninvasively "see" through the skin to ensure treatment precision, facilitate optimal skin lifting and tightening, and enhance patient comfort and safety. Therefore, we believe that MFU-V is the gold standard for nonsurgical lifting and skin tightening.
  2. Chong WH, Leong SS, Lim J
    Electrophoresis, 2021 11;42(21-22):2303-2328.
    PMID: 34213767 DOI: 10.1002/elps.202100081
    Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
  3. Yap XL, Wood B, Ong TA, Lim J, Goh BH, Lee WL
    Membranes (Basel), 2021 Jul 31;11(8).
    PMID: 34436354 DOI: 10.3390/membranes11080591
    Extracellular vesicles (EVs) are membranous nanoparticles naturally released from living cells which can be found in all types of body fluids. Recent studies found that cancer cells secreted EVs containing the unique set of biomolecules, which give rise to a distinctive absorbance spectrum representing its cancer type. In this study, we aimed to detect the medium EVs (200-300 nm) from the urine of prostate cancer patients using Fourier transform infrared (FTIR) spectroscopy and determine their association with cancer progression. EVs extracted from 53 urine samples from patients suspected of prostate cancer were analyzed and their FTIR spectra were preprocessed for analysis. Characterization of morphology, particle size and marker proteins confirmed that EVs were successfully isolated from urine samples. Principal component analysis (PCA) of the EV's spectra showed the model could discriminate prostate cancer with a sensitivity of 59% and a specificity of 81%. The area under curve (AUC) of FTIR PCA model for prostate cancer detection in the cases with 4-20 ng/mL PSA was 0.7, while the AUC for PSA alone was 0.437, suggesting the analysis of urinary EVs described in this study may offer a novel strategy for the development of a noninvasive additional test for prostate cancer screening.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2021;81(4):312.
    PMID: 34727148 DOI: 10.1140/epjc/s10052-021-08949-5
    This paper presents new sets of parameters ("tunes") for the underlying-event model of the H E R W I G 7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in H E R W I G 7 , and are obtained from a fit to minimum-bias data collected by the CMS experiment at s = 0.9 , 7, and 13 Te . The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the data.
  5. Lim HX, Lim J, Jazayeri SD, Poppema S, Poh CL
    Biomed J, 2021 03;44(1):18-30.
    PMID: 33727051 DOI: 10.1016/j.bj.2020.09.005
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic involving so far more than 22 million infections and 776,157 deaths. Effective vaccines are urgently needed to prevent SARS-CoV-2 infections. No vaccines have yet been approved for licensure by regulatory agencies. Even though host immune responses to SARS-CoV-2 infections are beginning to be unravelled, effective clearance of virus will depend on both humoral and cellular immunity. Additionally, the presence of Spike (S)-glycoprotein reactive CD4+ T-cells in the majority of convalescent patients is consistent with its significant role in stimulating B and CD8+ T-cells. The search for immunodominant epitopes relies on experimental evaluation of peptides representing the epitopes from overlapping peptide libraries which can be costly and labor-intensive. Recent advancements in B- and T-cell epitope predictions by bioinformatic analysis have led to epitope identifications. Assessing which peptide epitope can induce potent neutralizing antibodies and robust T-cell responses is a prerequisite for the selection of effective epitopes to be incorporated in peptide-based vaccines. This review discusses the roles of B- and T-cells in SARS-CoV-2 infections and experimental validations for the selection of B-, CD4+ and CD8+ T-cell epitopes which could lead to the construction of a multi-epitope peptide vaccine. Peptide-based vaccines are known for their low immunogenicity which could be overcome by incorporating immunostimulatory adjuvants and nanoparticles such as Poly Lactic-co-Glycolic Acid (PLGA) or chitosan.
  6. Chhablani J, Wong K, Tan GS, Sudhalkar A, Laude A, Cheung CMG, et al.
    Asia Pac J Ophthalmol (Phila), 2020;9(5):426-434.
    PMID: 32956188 DOI: 10.1097/APO.0000000000000312
    PURPOSE: The aim of this consensus article was to provide comprehensive recommendations in the management of diabetic macular edema (DME) by reviewing recent clinical evidence.

    DESIGN: A questionnaire containing 47 questions was developed which encompassed clinical scenarios such as treatment response to anti-vascular endothelial growth factor and steroid, treatment side effects, as well as cost and compliance/reimbursement in the management of DME using a Dephi questionnaire as guide.

    METHODS: An expert panel of 12 retinal specialists from Singapore, Malaysia, Philippines, India and Vietnam responded to this questionnaire on two separate occasions. The first round responses were compiled, analyzed and discussed in a round table discussion where a consensus was sought through voting. Consensus was considered achieved, when 9 of the 12 panellists (75%) agreed on a recommendation.

    RESULTS: The DME patients were initially profiled based on their response to treatment, and the terms target response, adequate response, nonresponse, and inadequate response were defined. The panellists arrived at a consensus on various aspects of DME treatment such as need for classification of patients before treatment, first-line treatment options, appropriate time to switch between treatment modalities, and steroid-related side effects based on which recommendations were derived, and a treatment algorithm was developed.

    CONCLUSIONS: This consensus article provides comprehensive, evidence-based treatment guidelines in the management of DME in Asian population. In addition, it also provides recommendations on other aspects of DME management such as steroid treatment for stable glaucoma patients, management of intraocular pressure rise, and recommendations for cataract development.

  7. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
  8. Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A
    Colloids Surf B Biointerfaces, 2013 Oct 1;110:248-53.
    PMID: 23732801 DOI: 10.1016/j.colsurfb.2013.05.001
    Protein adsorption onto membrane surfaces is important in fields related to separation science and biomedical research. This study explored the molecular interactions between protein, bovine serum albumin (BSA), and nitrocellulose films (NC) using electrokinetic phenomena and the effects of these interactions on the streaming potential measurements for different membrane pore morphologies and pH conditions. The data were used to calculate the streaming ratios of membranes-to-proteins and to compare these values to the electrostatic or hydrophobic attachment of the protein molecules onto the NC membranes. The results showed that different pH and membrane pore morphologies contributes to different protein adsorption mechanisms. The protein adsorption was significantly reduced under conditions where the membrane and protein have like-charges due to electrostatic repulsion. At the isoelectric point (IEP) of the protein, the repulsion between the BSA and the NC membrane was at the lowest; thus, the BSA could be easily attached onto the membrane/solution interface. In this case, the protein was considered to be in a compact layer without intermolecular protein repulsions.
  9. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Aug 24;121(8):082301.
    PMID: 30192601 DOI: 10.1103/PhysRevLett.121.082301
    The elliptic azimuthal anisotropy coefficient (v_{2}) is measured for charm (D^{0}) and strange (K_{S}^{0}, Λ, Ξ^{-}, and Ω^{-}) hadrons, using a data sample of p+Pb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16  TeV. A significant positive v_{2} signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity p+Pb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller v_{2} than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at sqrt[s_{NN}]=5.02  TeV, also presented.
  11. Sullivan T, Thirthagiri E, Chong CE, Stauffer S, Reid S, Southon E, et al.
    Hum Mutat, 2021 Feb;42(2):200-212.
    PMID: 33314489 DOI: 10.1002/humu.24154
    The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.
  12. Lim J, Bhoo-Pathy N, Sothilingam S, Malek R, Sundram M, Hisham Bahadzor B, et al.
    PLoS One, 2014;9(8):e104917.
    PMID: 25111507 DOI: 10.1371/journal.pone.0104917
    OBJECTIVES: To study the baseline PSA profile and determine the factors influencing the PSA levels within a multiethnic Asian setting.
    MATERIALS AND METHODS: We conducted a cross-sectional study of 1054 men with no clinical evidence of prostate cancer, prostate surgery or 5α-reductase inhibitor treatment of known prostate conditions. The serum PSA concentration of each subject was assayed. Potential factors associated with PSA level including age, ethnicity, height, weight, family history of prostate cancer, lower urinary tract voiding symptoms (LUTS), prostate volume and digital rectal examination (DRE) were evaluated using univariable and multivariable analysis.
    RESULTS: There were 38 men (3.6%) found to have a PSA level above 4 ng/ml and 1016 (96.4%) with a healthy PSA (≤4 ng/ml). The median PSA level of Malay, Chinese and Indian men was 1.00 ng/ml, 1.16 ng/ml and 0.83 ng/ml, respectively. Indians had a relatively lower median PSA level and prostate volume than Malays and Chinese, who shared a comparable median PSA value across all 10-years age groups. The PSA density was fairly similar amongst all ethnicities. Further analysis showed that ethnicity, weight and prostate volume were independent factors associated with age specific PSA level in the multivariable analysis (p<0.05).
    CONCLUSION: These findings support the concept that the baseline PSA level varies between different ethnicities across all age groups. In addition to age and prostate volume, ethnicity may also need to be taken into account when investigating serum PSA concentrations in the multiethnic Asian population.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Nov 27;125(22):222001.
    PMID: 33315428 DOI: 10.1103/PhysRevLett.125.222001
    Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10^{-6}  sec, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon center-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production (σ_{tt[over ¯]}) via the selection of charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, σ_{tt[over ¯]}=2.54_{-0.74}^{+0.84} and 2.03_{-0.64}^{+0.71}  μb, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2022 Jan 21;128(3):032001.
    PMID: 35119878 DOI: 10.1103/PhysRevLett.128.032001
    The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sqrt[s_{NN}]=5.02  TeV per nucleon pair, using the decay chain X(3872)→J/ψπ^{+}π^{-}→μ^{+}μ^{-}π^{+}π^{-}. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7  nb^{-1}. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Nov 30;121(22):221802.
    PMID: 30547617 DOI: 10.1103/PhysRevLett.121.221802
    The first evidence of events consistent with the production of a single top quark in association with a photon is reported. The analysis is based on proton-proton collisions at sqrt[s]=13  TeV and recorded by the CMS experiment in 2016, corresponding to an integrated luminosity of 35.9  fb^{-1}. Events are selected by requiring the presence of a muon (μ), a photon (γ), an imbalance in transverse momentum from an undetected neutrino (ν), and at least two jets (j) of which exactly one is identified as associated with the hadronization of a b quark. A multivariate discriminant based on topological and kinematic event properties is employed to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations. A fiducial cross section is measured for isolated photons with transverse momentum greater than 25 GeV in the central region of the detector. The measured product of the cross section and branching fraction is σ(pp→tγj)B(t→μνb)=115±17(stat)±30(syst)  fb, which is consistent with the standard model prediction.
  16. Ng WM, Chong WH, Abdullah AZ, Lim J
    Langmuir, 2023 Dec 05;39(48):17270-17285.
    PMID: 37976676 DOI: 10.1021/acs.langmuir.3c02358
    This study provides a systematic analysis of the transport and magnetophoretic behavior of nanoscale zerovalent iron (nZVI) particles, both bare and surface functionalized by poly(ethylene glycol) (PEG) and carboxymethyl cellulose (CMC), after undergoing a chemical reaction. Here, a simple and well-investigated chemical reaction of methyl orange (MO) degradation by nZVI was used as a model reaction system, and the sand column transport and low-gradient magnetophoretic profiles of the nanoparticles were measured before and after the reaction. The results were compared over time and analyzed in the context of extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to understand the particle interactions involved. The colloidal stability of both bare and functionalized nZVI particles was enhanced after the reaction due to the consumption of metallic Fe content, resulting in a significant drop in their magnetic properties. As a result, they exhibited improved mobility across the sand column and a slower magnetophoretic collection rate compared to the unreacted particles. Here, the colloidal filtration theory (CFT) was employed to analyze the transport behavior of nZVI particles across the packed sand column. It has been observed that the surface properties of the reacted functionalized particles changed, possibly due to the entrapment of degraded products within the polymer adlayer. Moreover, quartz crystal microbalance with dissipation (QCM-D) measurements were performed to reveal the viscoelastic contribution of the adlayer formed by both bare and functionalized nZVI particles after the reaction on influencing their transport behavior across the sand column. Finally, we proposed the implementation of a high-gradient magnetic trap (HGMT) to reduce the transport distance of the colloidally stable CMC-nZVI, both before and after the reaction. This study sheds light on the behavioral changes of iron nanoparticles after the reaction and highlights environmental concerns regarding the presence of reacted nanoparticles.
  17. Anbarasen L, Lim J, Rajandram R, Mun KS, Sia SF
    PeerJ, 2019;7:e7058.
    PMID: 31275742 DOI: 10.7717/peerj.7058
    Background: Matrix metalloproteinase (MMP)-2 and -9 are Osteopontin (OPN) dependent molecules implicated in the destabilization of blood vessels. OPN and MMPs have been studied in brain arteriovenous malformation (BAVM) patients' tissues and blood samples before intervention. In this study, we compared the serum level of these markers before and after treatment, as well as assessed their protein expressions in BAVM tissues to evaluate their roles in this disease.

    Methodology: Serum samples from six BAVM patients and three control subjects were analyzed using enzyme-linked immunoabsorbent assay (ELISA) for OPN. A total of 10 BAVM patients and five control subjects were analyzed using Multiplex ELISA for MMPs. A total of 16 BAVM tissue samples and two normal brain tissue samples were analyzed using immunohistochemistry.

    Result: MMP-2 and -9 were significantly higher in the serum of BAVM patients before and after treatment than in control patients. There were no significant differences of OPN and MMP-9 serum level in BAVM patients before and after treatment. MMP-2 showed a significant elevation after the treatment. Expression of OPN, MMP-2 and -9 proteins were seen in endothelial cells, perivascular cells and brain parenchyma of BAVM tissues.

    Conclusion: Findings revealed that the level of MMP-2 and -9 in the serum correlated well with the expression in BAVM tissues in several cases. Knockdown studies will be required to determine the relationships and mechanisms of action of these markers in the near future. In addition, studies will be required to investigate the expression of these markers' potential applications as primary medical therapy targets for BAVM patients.

  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    PMID: 31976986 DOI: 10.1140/epjc/s10052-019-7499-4
    New sets of CMS underlying-event parameters ("tunes") are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell-Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
  19. Mat S, Razack AH, Lim J, Khong SY, Kamaruzzaman SB, Chin AV, et al.
    PMID: 31850355 DOI: 10.3389/fmed.2019.00277
    Objectives: While the negative impact of falls in older persons has been recognized, the association between knee pains and falls remains inconclusive due to underreporting and undertreatment of knee pain. This study was conducted to evaluate the relationship between knee pain and knee pain severity with falls risk and to further determine factors which influence this potential relationship. Design: This was cross-sectional study from the Malaysian Elders Longitudinal Research (MELoR) study. Setting: Urban community dwellers in a middle-income South East Asian country. Participants: One thousand two hundred twelve of a representative sample of community dwelling older persons aged 55 years and older. Outcome measures: Falls in the preceding 12 months and knee pain were collected during a home-based computer-assisted interview. Physical and functional performance were measured using the Timed Up and Go test and the Katz and Lawton scales, respectively. Psychological status was determined using the Depression Anxiety and Stress Scale (DASS-21). Results: Of the 1,212 participants included in this analysis, knee pain was present in 402 (33.17%) individuals (124 (30.85%) mild, 210 (52.24%) moderate, 68 (16.92%) severe). The presence of knee pain was associated with increased risk of falls [odds Ratio, OR(95% confidence interval, CI): 1.81 (1.37-2.38)]. Severe knee pain was an independent predictor for falls after adjustment for functional impairment and psychological status. Mild, moderate, and severe knee pain had a specific indirect effect on falls through reducing functional impairment, which in turn increases their psychological concern. Conclusion: Future studies should explore this relationship prospectively and evaluate whether interventions which alleviate psychological concerns and improve function will reduce falls risk in those with mild to moderate knee pain.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links