Displaying publications 41 - 60 of 104 in total

Abstract:
Sort:
  1. Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Naveen SV, et al.
    ACS Appl Mater Interfaces, 2017 Sep 20;9(37):31381-31392.
    PMID: 28836753 DOI: 10.1021/acsami.7b07769
    Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga2O3-containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited >79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations.
  2. Osman O, Fong MY, Sekaran SD
    J Gen Virol, 2009 Mar;90(Pt 3):678-686.
    PMID: 19218214 DOI: 10.1099/vir.0.005306-0
    The full-length genomes of two DENV-1 viruses isolated during the 2005-2006 dengue incidents in Brunei were sequenced. Twenty five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the genome. The amplified PCR products were sent to a commercial laboratory for sequencing and the nucleotides and the deduced amino acids were determined. Sequence analysis of the envelope gene at the nucleotide and amino acid levels between the two isolates showed 92 and 96 % identity, respectively. Comparison of the envelope gene sequences with 68 other DENV-1 viruses of known genotypes placed the two isolates into two different genotypic groups. Isolate DS06/210505 belongs to genotype V together with some of the recent isolates from India (2003) and older isolates from Singapore (1990) and Burma (1976), while isolate DS212/110306 was clustered in genotype IV with the prototype Nauru strain (1974) and with some of the recent isolates from Indonesia (2004) and the Philippines (2002, 2001). In the full-length genome analysis at the nucleotide level, isolate DS06/210505 showed 94 % identity to the French Guyana strain (1989) in genotype V while isolate DS212/110306 had 96 % identity to the Nauru Island strain (1974) in genotype IV. This work constitutes the first complete genetic characterization of not only Brunei DENV-1 virus isolates, but also the first strain from Borneo Island. This study was the first to report the isolation of dengue virus in the country.
  3. Mahboob T, Nawaz M, de Lourdes Pereira M, Tian-Chye T, Samudi C, Sekaran SD, et al.
    Sci Rep, 2020 06 02;10(1):8954.
    PMID: 32488154 DOI: 10.1038/s41598-020-65728-0
    Acanthamoeba, a genus that contains at least 24 species of free-living protozoa, is ubiquitous in nature. Successful treatment of Acanthamoeba infections is always very difficult and not always effective. More effective drugs must be developed, and medicinal plants may have a pivotal part in the future of drug discovery. Our research focused on investigating the in vitro anti- acanthamoebic potential of Leea indica and its constituent gallic acid in different concentrations. Water and butanol fractions exhibited significant amoebicidal activity against trophozoites and cysts. Gallic acid (100 µg/mL) revealed 83% inhibition of trophozoites and 69% inhibition of cysts. The butanol fraction induced apoptosis in trophozoites, which was observed using tunnel assay. The cytotoxicity of the fractions and gallic acid was investigated against MRC-5 and no adverse effects were observed. Gallic acid was successfully loaded within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with 82.86% encapsulation efficiency, while gallic acid showed 98.24% in vitro release at 48 hours. Moreover, the gallic acid encapsulated in the PLGA nanoparticles exhibited 90% inhibition against trophozoites. In addition, gallic acid encapsulated nanoparticles showed reduced cytotoxicity towards MRC-5 compared to gallic acid, which evidenced that natural product nanoencapsulation in polymeric nanoparticles could play an important role in the delivery of natural products.
  4. Mahboob T, Azlan AM, Tan TC, Samudi C, Sekaran SD, Nissapatorn V, et al.
    Asian Pac J Trop Med, 2016 Sep;9(9):866-871.
    PMID: 27633300 DOI: 10.1016/j.apjtm.2016.07.008
    OBJECTIVE: To examine the acanthamoebicidal effects of ethyl acetate, aqueous and butanol fractions of dried flower buds of Lonicera japonica (L. japonica) Thunb. (Flos Lonicerae) in vitro.

    METHODS: Acanthamoeba triangularis isolates were obtained from environmental water samples and identified by PCR. They were exposed to ethyl acetate, water and butanol fractions of L. japonica Thunb. at concentrations ranging from 0.5 mg/mL to 1.5 mg/mL. The extracts were evaluated for growth inhibition at 24, 48 and 72 h, respectively. Chlorogenic acid at a concentration of 1 mg/mL was examined for inhibition of encystment.

    RESULTS: Ethyl acetate fraction at a concentration of 1.5 mg/mL evoked a significant reduction of trophozoite viability by 48.9% after 24 h, 49.2% after 48 h and 33.7% after 72 h chlorogenic acid, the major active constituent of L. japonica Thunb. at the concentration of 1 mg/mL reduced the cysts/trophozoite ratio by 100% after 24 h, 84.0% after 48 h and 72.3% after 72 h. This phenolic compound at concentration of 1 mg/mL concurrent with 0.6% hydrogen peroxide inhibited hydrogen peroxide-induced encystment by 92.8% at 72 h.

    CONCLUSIONS: Results obtained from this study show that ethyl acetate fraction at 1.5 mg/mL is the most potent fraction of L. japonica Thunb. and its major constituent chlorogenic acid showed the remarkable inhibition of encystment at a concentration of 1 mg/mL.

  5. Mahboob T, Azlan AM, Shipton FN, Boonroumkaew P, Nor Azman NS, Sekaran SD, et al.
    Exp Parasitol, 2017 Dec;183:160-166.
    PMID: 28916456 DOI: 10.1016/j.exppara.2017.09.002
    Acanthamoeba species are pathogenic protozoa which account for amoebic keratitis, conjunctivitis and granulomatous amoebic encephalitis. These amoebae form cysts which resist drugs and more effective acanthamoebicidal agents are needed. Medicinal plants could be useful in improving the current treatment strategies for Acanthamoeba infections. In the present study, we examined the amoebicidal effects of Pericampylus glaucus (Lam.) Merr., a medicinal plant used for the treatment of conjunctivitis in Malaysia. Pathogenic Acanthamoeba triangularis were isolated from environmental water samples and treated with different concentrations of fractions obtained from Pericampylus glaucus (Lam.) Merr. as well as main constituents for 24-72 h. Chlorhexidine was used as a reference drug. Ethanol fraction of stem showed significant (p 
  6. Lum LC, Syed Omar SF, Sri La Sri Ponnampalavanar S, Tan LH, Sekaran SD, Kamarulzaman A
    PLoS Negl Trop Dis, 2015 Jun;9(6):e0003836.
    PMID: 26047325 DOI: 10.1371/journal.pntd.0003836
    INTRODUCTION: The increasing incidence of dengue among adults in Malaysia and other countries has important implications for health services. Before 2004, in order to cope with the surge in adult dengue admissions, each of the six medical wards in a university hospital took turns daily to admit and manage patients with dengue. Despite regular in-house training, the implementation of the WHO 1997 dengue case management guidelines by the multiple medical teams was piecemeal and resulted in high variability of care. A restructuring of adult dengue inpatient service in 2004 resulted in all patients being admitted to one ward under the care of the infectious disease unit. Hospital and Intensive Care Unit admission criteria, discharge criteria and clinical laboratory testing were maintained unchanged throughout the study period.

    OBJECTIVES: To evaluate the impact of cohorting adult dengue patients on the quality of care and the clinical outcome in a university hospital in Malaysia.

    METHODS: A pre (2003) and post-intervention (2005-6) retrospective study was undertaken.

    INTERVENTION: Cohorting all dengue patients under the care of the Infectious Disease team in a designated ward in 2004.

    RESULTS: The number of patients enrolled was 352 in 2003, 785 in 2005 and 1158 in 2006. The evaluation and detection of haemorrhage remained high (>90%) and unchanged throughout the study period. The evaluation of plasma leakage increased from 35.4% pre-intervention to 78.8% post-intervention (p = <0.001) while its detection increased from 11.4% to 41.6% (p = <0.001). Examination for peripheral perfusion was undertaken in only 13.1% of patients pre-intervention, with a significant increase post-intervention, 18.6% and 34.2% respectively, p = <0.001. Pre-intervention, more patients had hypotension (21.5%) than detected peripheral hypoperfusion (11.4%), indicating that clinicians recognised shock only when patients developed hypotension. In contrast, post-intervention, clinicians recognised peripheral hypoperfusion as an early sign of shock. The highest haematocrit was significantly higher post-intervention but the lowest total white cell counts and platelet counts remained unchanged. A significant and progressive reduction in the use of platelet transfusions occurred, from 21.7% pre-intervention to 14.6% in 2005 and 5.2% in 2006 post-intervention, p<0.001. Likewise, the use of plasma transfusion decreased significantly from 6.1% pre-intervention to 4.0% and 1.6% in the post-intervention years of 2005 and 2006 respectively, p<0.001. The duration of intravenous fluid therapy decreased from 3 days pre-intervention to 2.5 days (p<0.001) post-intervention; the length of hospital stay reduced from 4 days pre- to 3 days (p<0.001) post-intervention and the rate of intensive care admission from 5.8% pre to 2.6% and 2.5% post-intervention, p = 0.005.

    CONCLUSION: Cohorting adult dengue patients under a dedicated and trained team of doctors and nurses led to a substantial improvement in quality of care and clinical outcome.

  7. Lum KY, Tay ST, Le CF, Lee VS, Sabri NH, Velayuthan RD, et al.
    Sci Rep, 2015;5:9657.
    PMID: 25965506 DOI: 10.1038/srep09657
    Candida spp. are the most common causes of fungal infections worldwide. Among the Candida species, Candida albicans remains the predominant species that causes invasive candidiasis in most countries. In this study, we used two peptides, KABT-AMP and uperin 3.6 as templates to develop novel antifungal peptides. Their anticandidal activity was assessed using a combination of MIC, time-killing assay and biofilm reduction assay. Hybrid peptides, KU2 and KU3 containing a mixed backbone of KABT-AMP and Uperin 3.6 demonstrated the most potent anticandidal activity with MIC values ranging from 8-16 mg/L. The number of Trp residues and the amphipathic structure of peptides probably enhanced the anticandidal activity of peptides. Increasing the cationicity of the uperin 3.6 analogues resulted in reduced MIC from the range of 64-128 mg/L to 16-64 mg/L and this was also correlated with the antibiofilm activity and killing kinetics of the peptides. Peptides showed synergistic effects when used in combination with conventional antifungals. Peptides demonstrated low haemolytic activity but significant toxicity on two normal human epithelial cell lines. This study provides us with a better understanding on the structure-activity relationship and the balance between cationicity and hydrophobicity of the peptides although the therapeutic application of the peptides is limited.
  8. Looi KW, Matsui Y, Kono M, Samudi C, Kojima N, Ong JX, et al.
    Int J Infect Dis, 2021 Sep;110:187-194.
    PMID: 34302960 DOI: 10.1016/j.ijid.2021.07.048
    OBJECTIVES: Progression of dengue is often associated with thrombocytopenia resulting from viral-induced bone marrow suppression and immune-mediated peripheral platelet consumption. Immature platelet fraction (IPF), which can be measured using a haematology analyser, is a precursor indicating platelet formation in the bone marrow. This study evaluated the trend of IPF as an early recovery indicator of platelets in dengue patients with thrombocytopenia, and its relationship with severe dengue in conjunction with reticulocyte count.

    METHODS: Hospitalized patients with dengue were enrolled and followed-up daily until discharge. Blood investigations included daily full blood counts and IPF measured using a haematology analyser.

    RESULTS: In total, 287 patients with confirmed dengue were enrolled in this study, 25 of whom had severe dengue. All patients had a decreasing trend in platelet count in the first week of illness, concomitant with an increasing trend in the percentage of immature platelets to total platelets (IPF%) for more than 3 days prior to platelet recovery. IPF% was significantly increased in patients with severe dengue compared with patients with non-severe dengue on days 3-5 after the onset of fever. Reticulocyte count increased significantly in patients with severe dengue on day 5.

    CONCLUSIONS: IPF can be utilized as an early recovery indicator of platelets in patients with dengue and thrombocytopenia.

  9. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    J Nutrigenet Nutrigenomics, 2013;6(6):305-26.
    PMID: 24642698 DOI: 10.1159/000357948
    Plant phenolics can inhibit, retard or reverse carcinogenesis, and may thus help prevent or treat cancer. Oil palm phenolics (OPP) previously showed anti-tumour activities in vivo via a cytostatic mechanism at 1,500 ppm gallic acid equivalent. Here, we report other possible molecular mechanisms by which this extract attenuates cancer, especially those concerning the immune response.
  10. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
  11. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    Eur J Nutr, 2013 Mar;52(2):443-56.
    PMID: 22527284 DOI: 10.1007/s00394-012-0346-0
    BACKGROUND: Water-soluble phenolics from the oil palm possess significant biological properties.

    PURPOSE: In this study, we aimed to discover the role of oil palm phenolics (OPP) in influencing the gene expression changes caused by an atherogenic diet in mice.

    METHODS: We fed mice with either a low-fat normal diet (14.6 % kcal/kcal fat) with distilled water, or a high-fat atherogenic diet (40.5 % kcal/kcal fat) containing cholesterol. The latter group was given either distilled water or OPP. We harvested major organs such as livers, spleens and hearts for microarray gene expression profiling analysis. We determined how OPP changed the gene expression profiles caused by the atherogenic diet. In addition to gene expression studies, we carried out physiological observations, blood hematology as well as clinical biochemistry, cytokine profiling and antioxidant assays on their blood sera.

    RESULTS: Using Illumina microarrays, we found that the atherogenic diet caused oxidative stress, inflammation and increased turnover of metabolites and cells in the liver, spleen and heart. In contrast, OPP showed signs of attenuating these effects. The extract increased unfolded protein response in the liver, attenuated antigen presentation and processing in the spleen and up-regulated antioxidant genes in the heart. Real-time quantitative reverse transcription-polymerase chain reaction validated the microarray gene expression fold changes observed. Serum cytokine profiling showed that OPP attenuated inflammation by modulating the Th1/Th2 axis toward the latter. OPP also increased serum antioxidant activity to normal levels.

    CONCLUSION: This study suggests that OPP may possibly attenuate atherosclerosis and other forms of cardiovascular disease.

  12. Leow SS, Sekaran SD, Sundram K, Tan Y, Sambanthamurthi R
    BMC Genomics, 2011 Aug 25;12:432.
    PMID: 21864415 DOI: 10.1186/1471-2164-12-432
    BACKGROUND: Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models.

    RESULTS: Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653).

    CONCLUSIONS: OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.

  13. Lee SH, Jaganath IB, Manikam R, Sekaran SD
    BMC Complement Altern Med, 2013 Oct 20;13:271.
    PMID: 24138815 DOI: 10.1186/1472-6882-13-271
    BACKGROUND: Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities.

    METHODS: Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus.

    RESULTS: Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity.

    CONCLUSIONS: Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

  14. Lee SH, Jaganath IB, Wang SM, Sekaran SD
    PLoS One, 2011;6(6):e20994.
    PMID: 21698198 DOI: 10.1371/journal.pone.0020994
    Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells.
  15. Lee SH, Atiya N, Wang SM, Manikam R, Raju CS, Sekaran SD
    Intervirology, 2018;61(4):193-203.
    PMID: 30541013 DOI: 10.1159/000495180
    OBJECTIVE: Herpes simplex virus infection through the neuronal route is the most well-studied mode of viral encephalitis that can persists in a human host for a lifetime. However, the involvement of other possible infection mechanisms by the virus remains underexplored. Therefore, this study aims to determine the temporal effects and mechanisms by which the virus breaches the human brain micro-vascular endothelial cells of the blood-brain barrier.

    METHOD: An electrical cell-substrate impedance-sensing tool was utilized to study the real-time cell-cell barrier or morphological changes in response to the virus infection.

    RESULTS: Herpes simplex virus, regardless of type (i.e., 1 or 2), reduced the cell-cell barrier resistance almost immediately after virus addition to endothelial cells, with negligible involvement of cell-matrix adhesion changes. There is no exclusivity in the infection ability of endothelial cells. From 30 h after HSV infection, there was an increase in cell membrane capacitance with a subsequent loss of cell-matrix adhesion capability, indicating a viability loss of the infected endothelial cells.

    CONCLUSION: This study shows for the first time that destruction of human brain micro-vascular endothelial cells as an in vitro model of the blood-brain barrier could be an alternative invasion mechanism during herpes simplex virus infection.

  16. Lee SH, Jaganath IB, Atiya N, Manikam R, Sekaran SD
    J Food Drug Anal, 2016 10;24(4):855-865.
    PMID: 28911625 DOI: 10.1016/j.jfda.2016.03.010
    Chemotherapies remain far from ideal due to drug resistance; therefore, novel chemotherapeutic agents with higher effectiveness are crucial. The extracts of four Phyllanthus species, namely Phyllanthus niruri, Phyllanthus urinaria, Phyllanthus watsonii, and Phyllanthus amarus, were shown to induce apoptosis and inhibit metastasis of breast carcinoma cells (MCF-7). The main objective of this study was to determine the pathways utilized by these four Phyllanthus species to exert anti-metastatic activities. A cancer 10-pathway reporter was used to investigate the pathways affected by the four Phyllanthus species. Results indicated that these Phyllanthus species suppressed breast carcinoma metastasis and proliferation by suppressing matrix metalloprotein 2 and 9 expression via inhibition of the extracellular signal-related kinase (ERK) pathway. Additionally, inhibition of hypoxia-inducible factor 1-α in the hypoxia pathway caused reduced vascular endothelial growth factor and inducible nitric oxide synthase expression, resulting in anti-angiogenic effects and eventually anti-metastasis. Two-dimensional gel electrophoresis identified numerous proteins suppressed by these Phyllanthus species, including invasion proteins, anti-apoptotic protein, protein-synthesis proteins, angiogenic and mobility proteins, and various glycolytic enzymes. Our results indicated that ERK and hypoxia pathways are the most likely targets of the four Phyllanthus species for the inhibition of MCF-7 metastasis.
  17. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
  18. Le CF, Jefferies JM, Yusof MY, Sekaran SD, Clarke SC
    Expert Rev Anti Infect Ther, 2012 Jun;10(6):707-19.
    PMID: 22734960 DOI: 10.1586/eri.12.54
    In Malaysia, various aspects of the epidemiology of pneumococcal carriage and disease remain largely unclear due to the lack of supporting data. Although a number of relevant studies have been documented, their individual discrete findings are not sufficient to inform experts on pneumococcal epidemiology at a national level. Therefore, in this review we aim to bring together and systematically evaluate the key information regarding pneumococcal disease epidemiology in Malaysia and provide a comprehensive overview of the data. Major aspects discussed include pneumococcal carriage, disease incidence and prevalence, age factors, invasiveness of pneumococci, serotypes, molecular epidemiology and antibiotic susceptibility. Penicillin resistance is increasingly prevalent and studies suggest that the majority of pneumococcal serotypes causing pneumococcal disease in Malaysia are covered by currently available conjugate vaccines. Continued surveillance is needed to provide a better understanding of pneumococcal epidemiology in Malaysia.
  19. Le CF, Palanisamy NK, Mohd Yusof MY, Sekaran SD
    PLoS One, 2011;6(5):e19547.
    PMID: 21603602 DOI: 10.1371/journal.pone.0019547
    BACKGROUND: Streptococcus pneumoniae is a major causative agent of severe infections, including sepsis, pneumonia, meningitis, and otitis media, that has since become a major public health concern. In this study, the serotypes distribution of pneumococcal isolates was investigated to predict the efficacy of the 7-valent pneumococcal conjugate vaccine (PCV7) among the Malaysian populations.
    METHODOLOGY/PRINCIPAL FINDINGS: A total of 151 clinical isolates were serotyped using multiplex PCR assays. Out of them, there were 21.2% penicillin-resistant, 29.1% penicillin-intermediate, and 49.7% penicillin-susceptible S. pneumoniae strains. Serotypes detected among the Malaysian isolates were 1, 3, 10A, 11A/11D, 12F/12A, 14, 15A, 15B/15C, 16F, 18C/18B/18A/18F, 19A, 19F, 23F, 35B, 35F/47F, 6A/6B, 7C/7B/40, 7F/7A, 9V/9A, and 34. Serotype 19F and 23F were the two most prevalent serotypes detected. Serotypes are highly associated with invasiveness of isolates (p = 0.001) and penicillin susceptibility (p<0.001). Serotype 19F was observed to have increased resistance against penicillin while serotype 19A has high invasive tendency. Age of patients was an important factor underlying the pneumococcal serotypes (p = 0.03) and clinical sites of infections (p<0.001). High prevalence of pneumococcal isolates were detected among children <5 years old at nasopharyngeal sites while elderly adults ≥60 years old were at increased risk for pneumococcal bacteremia.
    CONCLUSION/SIGNIFICANCE: Current study revealed that a number of serotypes, especially those associated with high penicillin resistance, have been formulated in the PCV7. Therefore, the protections expected from the routine use of PCV7 would be encouraging for the Malaysian. However, it is not possible to predict serotypes that might become predominant in the future and hence continued surveillance of circulating serotypes will be needed.
  20. Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD
    Sci Rep, 2016 05 26;6:26828.
    PMID: 27225022 DOI: 10.1038/srep26828
    In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links