Displaying publications 41 - 60 of 70 in total

Abstract:
Sort:
  1. Karim MR, Hossain MM, Khan MNN, Zain MFM, Jamil M, Lai FC
    Materials (Basel), 2014 Dec 05;7(12):7809-7827.
    PMID: 28788277 DOI: 10.3390/ma7127809
    Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.
    Matched MeSH terms: Alkalies
  2. Samadi M, Shah KW, Huseien GF, Lim NHAS
    Nanomaterials (Basel), 2020 Feb 14;10(2).
    PMID: 32075038 DOI: 10.3390/nano10020324
    The recycling of millions of tons of glass bottle waste produced each year is far from optimal. In the present work, ground blast furnace slag (GBFS) was substituted in fly ash-based alkali-activated mortars (AAMs) for the purpose of preparing glass bottle waste nano-powder (BGWNP). The AAMs mixed with BGWNP were subsequently subjected to assessment in terms of their energy consumption, economic viability, and mechanical and chemical qualities. Besides affording AAMs better mechanical qualities and making them more durable, waste recycling was also observed to diminish the emissions of carbon dioxide. A more than 6% decrease in carbon dioxide emissions, an over 16% increase in compressive strength, better durability and lower water absorption were demonstrated by AAM consisting of 5% BGWNP as a GBFS substitute. By contrast, lower strength was exhibited by AAM comprising 10% BGWNP. The conclusion reached was that the AAMs produced with BGWNP attenuated the effects of global warming and thus were environmentally advantageous. This could mean that glass waste, inadequate for reuse in glass manufacturing, could be given a second life rather than being disposed of in landfills, which is significant as concrete remains the most commonplace synthetic material throughout the world.
    Matched MeSH terms: Alkalies
  3. Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A., Zaman, H.M.D.K.
    MyJurnal
    A study on the effects of alkali treatment and compatibilising agent on the tensile properties of pineappleleaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite is presented in this paper. Thetensile properties of natural fibre reinforced polymer composites are mainly influenced by the interfacialadhesion between the matrix and the fibres. In this study, several chemical modifications were employedto improve the interfacial matrix-fibre bonding and this resulted in the enhancement of tensile propertiesof the composites. In this study, the surface modification of pineapple fibre with alkali treatments andcompatibilizer were used to improve the adhesion between hydrophilic pineapple fibre and hydrophobicpolymer matrix. There are two concentrations of NaOH treatments and compatibilizer used in this study,namely, 2 and 4 wt. %. The results show that the alkali treated fibre and the addition of compatibilisingagent in PALF/HIPS composites have improved the tensile strength and tensile modulus of the composites.
    Matched MeSH terms: Alkalies
  4. Siregar, Januar Parlaungan, Mohd. Sapuan Salit, Mohd. Zaki Ab. Rahman, Khairul Zaman Hj. Mohd. Dahlan
    MyJurnal
    This paper studied the thermal behaviour of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composite. Thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC) analysis were used to measure the thermal characteristic of HIPS/PALF composites. In particular, the TGA analysis was utilized to measure the degradation and decomposition of materials in neat polystyrene, pineapple fibre, and the composites. The measurements were carried out in the temperature of 25°C – 800°C, at a heating rate of 20°C min-1 and the nitrogen gas flow was 50 mL min-1. The temperature of the DSC analysis was programmed to be between 25°C – 300°C. The results from TGA analysis show that the addition of pineapple fibre has improved the thermal stability of the composites as compared to neat HIPS. In addition, the effects of compatibilising agent and surface modification of PALF with alkali treated were also determined and compared.
    Matched MeSH terms: Alkalies
  5. Ahmad Zakuan Ahmad Azmi, Mohd. Saaid, Irawan, Sonny
    MyJurnal
    The present project investigated the potential of utilizing corncobs and sugar cane waste as viscosivier in drilling fluid. For this purpose, the synthetic-based drilling fluid, Sarapar 147, was used as the base fluid. Both the materials were subjected to pre-treatment of drying, dehumidifying, grinding and sieving process prior to rheological tests. The rheological tests were conducted in accordance with the API 13B specifications to measure mud density, plastic viscosity, yield point, 10-second and 10-minute gel strength. The study found that plastic viscosity and yield point had a direct relationship with the amount of materials added. To drill fluid additive with corn cobs, the density, plastic viscosity and yield point were increased when the amount of additives were increased. Based on these experiments, both additives were found to have the potential to be used as additive in drilling fluid. In particular, they were able to improve its rheological properties by increasing the density, plastic viscosity and yield point. The suitable concentration for the corn cobs and sugar cane is 6.45 lb/bbl and 9.43 lb/bbl, respectively.
    Matched MeSH terms: Alkalies
  6. Zin, M.H., Abdan, K., Norizan, M.N., Mazlan, N.
    MyJurnal
    The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
    Matched MeSH terms: Alkalies
  7. Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S
    PLoS One, 2018;13(5):e0197345.
    PMID: 29847568 DOI: 10.1371/journal.pone.0197345
    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.
    Matched MeSH terms: Alkalies/chemistry
  8. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
    Matched MeSH terms: Alkalies
  9. Rizal S, Ikramullah, Gopakumar DA, Thalib S, Huzni S, Abdul Khalil HPS
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961241 DOI: 10.3390/polym10121316
    Natural fiber composites have been widely used for various applications such as automotive components, aircraft components and sports equipment. Among the natural fibers Typha spp have gained considerable attention to replace synthetic fibers due to their unique nature. The untreated and alkali-treated fibers treated in different durations were dried under the sun for 4 h prior to the fabrication of Typha fiber reinforced epoxy composites. The chemical structure and crystallinity index of composites were examined via FT-IR and XRD respectively. The tensile, flexural and impact tests were conducted to investigate the effect of the alkali treated Typha fibers on the epoxy composite. From the microscopy analysis, it was observed that the fracture mechanism of the composite was due to the fiber and matrix debonding, fiber pull out from the matrix, and fiber damage. The tensile, flexural and impact strength of the Typha fiber reinforced epoxy composite were increased after 5% alkaline immersion compared to untreated Typha fiber composite. From these results, it can be concluded that the alkali treatment on Typha fiber could improve the interfacial compatibility between epoxy resin and Typha fiber, which resulted in the better mechanical properties and made the composite more hydrophobic. So far there is no comprehensive report about Typha fiber reinforcing epoxy composite, investigating the effect of the alkali treatment duration on the interfacial compatibility, and their effect on chemical and mechanical of Typha fiber reinforced composite, which plays a vital role to provide the overall mechanical performance to the composite.
    Matched MeSH terms: Alkalies
  10. Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY
    Polymers (Basel), 2017 Aug 11;9(8).
    PMID: 30971032 DOI: 10.3390/polym9080355
    The aim was to explore the utilization of oil palm mesocarp fiber (OPMF) as a source for the production of cellulose nanocrystals (CNC). OPMF was first treated with alkali and then bleached before the production of CNC by acid hydrolysis (H₂SO₄). The produced materials were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was proven that acid hydrolysis can increase the crystallinity of bleached OPMF and reduce the dimension of cellulose to nano scale. Changes in the peaks of the FTIR spectrum at 2852 (C-H stretching), 1732 (C=O stretching) and 1234 cm-1 (C-O stretching) indicated that the alkali treatment completely removed hemicelluloses and lignin from the fiber surface. This can be seen from the thermogram obtained from the TGA characterization. Morphological characterization clearly showed the formation of rod-shaped CNCs. The promising results prove that OPMF is a valuable source for the production of CNC.
    Matched MeSH terms: Alkalies
  11. Atiqah MSN, Gopakumar DA, F A T O, Pottathara YB, Rizal S, Aprilia NAS, et al.
    Polymers (Basel), 2019 Nov 05;11(11).
    PMID: 31694184 DOI: 10.3390/polym11111813
    The conventional isolation of cellulose nanofibers (CNFs) process involves high energy input which leads to compromising the pulp fiber's physical and chemical properties, in addition to the issue of elemental chlorine-based bleaching, which is associated with serious environmental issues. This study investigates the characteristic functional properties of CNFs extracted via total chlorine-free (TCF) bleached kenaf fiber followed by an eco-friendly supercritical carbon dioxide (SC-CO2) treatment process. The Fourier transmission infra-red FTIR spectra result gave remarkable effective delignification of the kenaf fiber as the treatment progressed. TEM images showed that the extracted CNFs have a diameter in the range of 10-15 nm and length of up to several micrometers, and thereby proved that the supercritical carbon dioxide pretreatment followed by mild acid hydrolysis is an efficient technique to extract CNFs from the plant biomass. XRD analysis revealed that crystallinity of the fiber was enhanced after each treatment and the obtained crystallinity index of the raw fiber, alkali treated fiber, bleached fiber, and cellulose nanofiber were 33.2%, 54.6%, 88.4%, and 92.8% respectively. SEM images showed that amorphous portions like hemicellulose and lignin were removed completely after the alkali and bleaching treatment, respectively. Moreover, we fabricated a series of cellulose nanopapers using the extracted CNFs suspension via a simple vacuum filtration technique. The fabricated cellulose nanopaper exhibited a good tensile strength of 75.7 MPa at 2.45% strain.
    Matched MeSH terms: Alkalies
  12. Anis Syuhada Mohd Saidi, Chin HC, Sharifah Nabihah Syed Jaafar, Farah Nadia Mohammad Padzil, Sarani Zakaria
    Sains Malaysiana, 2016;45:263-270.
    Cellulose was extracted from kenaf core pulp (KCP) by a series of bleaching processes (D) and alkali treatment (E) in the sequence of (DEED) and pretreated with acid hydrolysis in room temperature for 6 hours. The pretreated and non-treated cellulose were dissolved in lithium hydroxide/urea (LiOH/urea) and subsequently used to produce cellulose membrane cross linked with various percentages of glyoxal from 2.5 to 20%. The effects of acid hydrolysis pretreatment on solubility, crystallinity and morphology were investigated. The acid hydrolysis pretreatment leads to higher solubility of the cellulose solution. The formation of cellulose II and crystallinity index of the cellulose membrane were examined by X-ray diffraction (XRD). Cellulose membrane without acid hydrolysis pretreatment cross linked with higher percentage of glyoxal has higher tensile strength compared with the treated cellulose.
    Matched MeSH terms: Alkalies
  13. Siti Aisyah Shamsudin, Jenniver Junas
    Sains Malaysiana, 2018;47:2841-2849.
    Pengimejan tradisi mempunyai banyak kekurangan seperti mempunyai jangka hayat yang pendek serta bersaiz besar
    kerana sifat pendafluornya tidak tahan lama atau berlakunya pelunturanfoto. Melalui kajian ini, nanohablur kadmium
    sulfida dihasilkan dan berfungsi sebagai pengimejan titik kuantum yang sesuai dengan sifat optiknya yang pelbagai
    mengikut saiz zarahnya. Sifat optik titik kuantum kadmium sulfida (TK CdS) boleh dipengaruhi oleh saiz dan juga
    komposisi kimia TK seperti perubahan pH. Dalam kajian ini, sifat optik TK CdS dikaji terhadap perubahan nilai pH
    dengan menghasilkan TK CdS melalui kaedah koloidal. Kadmium asetat dihidrat (C4
    H6
    CdO4
    .2H2
    O) dan natrium sulfida
    (Na2
    S) digunakan sebagai sebagai bahan pemula bagi menghasilkan TK CdS. Nilai pH diubah suai dengan menitiskan
    natrium hidroksida (NaOH) ke dalam larutan TK CdS. Lima jenis larutan disediakan iaitu pada nilai pH5, pH7, pH8,
    pH9 dan pH10. Masalah penggumpalan sering berlaku semasa proses sintesis CdS. Oleh itu, kajian ini menggunakan
    asid tioglikolik (HSCH2
    CO2
    H) sebagai agen penstabil kepada TK CdS. Spektra keserapan UV memberi anjakan biru
    apabila TK CdS pada pH alkali kerana saiz nanohablur mengecil. Hasil daripada spektroskopi pendarfluor mendapati
    larutan yang mempunyai nilai pH8 memberi puncak yang tertinggi. Hal ini adalah kerana pada pH ini nanohablur
    mampu berubah pada posisi yang tepat dan membentuk TK CdS pada kehabluran yang tinggi. Oleh itu, mekanisme ini
    dapat membentuk perangkap lubang dan seterusnya eksiton terbentuk.
    Matched MeSH terms: Alkalies
  14. Rahmadini Syafri, Ishak Ahmad, Ibrahim Abdullah
    Sains Malaysiana, 2011;40:1123-1127.
    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5% w/v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5%, 10%, and 20% wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10% wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60% natural rubber (NR), 40% high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5% NaOH followed by treatment with 10% LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites.
    Matched MeSH terms: Alkalies
  15. Ng TF, Raj JK, Ghani AA
    Sains Malaysiana, 2013;42:773-781.
    The Bukit Lagong area is the most important aggregate supply centre in Selangor. Geological studies were carried out in four quarries in the Bukit Lagong area and samples were subjected to petrographic examination and accelerated expansion tests to assess the potential alkali-aggregate reactivity of granite aggregates. The granitic rocks comprise mainly of coarse grained megacrystic granite, minor medium grained megacrystic granite and microgranite. Petrographic examination showed that the primary minerals in these undeformed granitic rocks are not alkali reactive. Faulting and related alteration and mineralization have produced potentially alkali reactive minerals including microcrystalline and strained quartz and fine phyllosilicates. Marginally deleterious and deleterious expansion is shown by the accelerated mortar bar tests. Although alkali reactive rocks are present in some quarries in Bukit Lagong, their volume is small. When blended with the undeformed granitic rocks, the aggregates produced are not expected to cause alkali-aggregate reaction in concrete.
    Matched MeSH terms: Alkalies
  16. Riyanto, Jumat Salimon, Mohamed Rozali Othman
    Sains Malaysiana, 2007;36:175-181.
    Elektrod platinum-polivinilklorida (Pt-PVC) untuk pengoksidaan elektrokimia etanol dalam larutan alkali telah direkabentuk. Elektrod Pt-PVC dibina dengan mencampurkan serbuk-serbuk logam platinum dengan PVC (95:5 w/w), diaduk untuk mendapatkan campuran yang homogen, ditambahkan dengan tetrahidrofuran (THF) untuk melarutkan PVC, dikeringkan, dimasukkan ke dalam acuan berdiameter 1 cm dan ditekan pada tekanan kira-kira 10 tan/cm2. Kajian elektrokimia dilakukan menggunakan voltammetri kitaran (CV) dan kronokoulometri (CC). CV untuk etanol yang menggunakan elektrod-elektrod kepingan logam Pt dan Pt-PVC masing-masing memberikan ketumpatan arus 0.25 mA/cm2 dan 85 mA/cm2 untuk puncak penjerapan hidroksida. Ini menunjukkan bahawa elektrod Pt-PVC mempunyai nilai konduktiviti dan perilaku elektrokimia yang lebih baik untuk pengoksidaan etanol dalam KOH berbanding elektrod kepingan logam Pt. Hasil kajian mendapati bahawa terdapat peningkatan peratus hasil elektrolisis dari 3.64% kepada 23.64% asid asetik apabila elektrod Pt-PVC digunakan untuk pengoksidaan elektrokimia 0.25 M etanol dalam larutan elektrolit 1.0 M KOH menggantikan elektrod kepingan logam Pt.
    Matched MeSH terms: Alkalies
  17. Lim SL, Ishak Ahmad, Azwan Mat Lazim
    Sains Malaysiana, 2015;44:779-785.
    The purpose of this study was to produce a novel pH sensitive hydrogel with superior thermal stability, composed of
    poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali
    and bleaching treatments followed by acid hydrolysis. PAA was then subjected to chemical cross-linking using the crosslinking
    agent (N,N-methylenebisacrylamide) in CNC suspension. The mixture was casted onto petri dish to obtain disc
    shape hydrogel. PAA/cellulose hydrogel with the same composition ratio were also prepared as control. The effect of
    reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH
    was studied. The obtained hydrogel was further subjected to different tests such as thermogravimetric analysis (TGA) to
    study the thermal behavior, Fourier transform infrared for functional group identification and swelling test for swelling
    behavior at different pH. The cross-linking of PAA was verified with FTIR with the absence of C=C double bond. In TGA
    test, PAA/CNC hydrogel showed significantly higher thermal stability compared with pure PAA hydrogel. The hydrogel
    obtained showed excellent pH sensitivity and experienced maximum swelling at pH7. The PAA/CNC hydrogel can be
    developed further as drug carrier
    Matched MeSH terms: Alkalies
  18. Zhao P, Wang Y, Zhang Y, Guo T, Zhang Z, Zhang WJ, et al.
    Saudi J Biol Sci, 2016 May;23(3):353-7.
    PMID: 27081360 DOI: 10.1016/j.sjbs.2015.08.007
    In this study, the selenium enriched peanuts and the different solubility proteins extracted from them were investigated. The dried defatted selenium enriched peanuts (SeP) powder (0.3147 μg/g) had a 2.5-fold higher mean total selenium concentration than general peanuts (GP) power (0.1233 μg/g). The SeP had higher concentration of selenium, manganese and zinc than that of GP, but less calcium. The rate of extraction of protein was 23.39% for peanuts and alkali soluble protein was the main component of protein in SeP, which accounted for 92.82% of total soluble protein and combined selenium was 77.33% of total selenium protein. In different forms of proteins from SeP, the WSePr due to higher concentration of selenium had higher DPPH free-radical scavenging activity, higher reducing activity and longer induction time than other proteins.
    Matched MeSH terms: Alkalies
  19. Naureen R, Tariq M, Yusoff I, Chowdhury AJ, Ashraf MA
    Saudi J Biol Sci, 2015 May;22(3):332-9.
    PMID: 25972756 DOI: 10.1016/j.sjbs.2014.11.017
    Methyl esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties of sunflower oil biodiesel were determined and discussed in the light of ASTM D6751 standards for biodiesel. The sunflower oil biodiesel was chemically characterized with analytical techniques like FT-IR, and NMR ((1)H and (13)C). The chemical composition of sunflower oil biodiesel was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The percentage conversion of triglycerides to the corresponding methyl esters determined by (1)H NMR was 87.33% which was quite in good agreement with the practically observed yield of 85.1%.
    Matched MeSH terms: Alkalies
  20. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Alkalies*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links