Displaying publications 41 - 60 of 873 in total

Abstract:
Sort:
  1. Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, et al.
    Int J Food Microbiol, 2023 Jun 02;394:110184.
    PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184
    Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Mohd-Zubri NS, Ramasamy K, Abdul-Rahman NZ
    Arch Oral Biol, 2022 Nov;143:105515.
    PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515
    OBJECTIVE: This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties.

    DESIGN: The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain.

    RESULTS: Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis.

    CONCLUSIONS: These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Ali S, Shah SAUR, Rauf M, Hassan M, Ullah W, Dawar FU
    J Fish Dis, 2023 Nov;46(11):1225-1237.
    PMID: 37501533 DOI: 10.1111/jfd.13841
    This study explored the bactericidal role of the epidermal mucus (EM) of five freshwater Cyprinid fish species namely Ctenopharyngodon idella, Labeo rohita, Catla catla, Hypophthalmichthys molitrix, and Cirrhinus mrigala after treatment with Aeromonas hydrophila. Extracts of EM (crude and acidic) of each species showed bactericidal activity against various Gram -ve (Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, Edwardsiella tarda, Salmonella enterica, Klebsiella pneumonia, Serratia marcescens, and Enterobacter cloacae) and Gram +ve (Bacillus wiedmannii and Staphylococcus aureus) bacteria compared with standard antibiotics (Fosfomycin). The zone of inhibition (ZOI) was measured in millimetres against antibiotics (Fosfomycin). Variations in bactericidal activity of EM were observed against bacteria from the same and different fish species. The acidic extract was more effective than the crude extract and showed significantly higher ZOI values against various bacteria and Fosfomycin antibiotics. This result shows that fish EM may perform an important role in fish defence against bacteria. Therefore, this study may hint towards the substitution of synthetic antibiotics with fish EM that may be used as a novel 'bactericidal' in aquaculture as well as in humans against bacterial infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Septama AW, Yuandani Y, Khairunnisa NA, Nasution HR, Utami DS, Kristiana R, et al.
    Lett Appl Microbiol, 2023 Nov 01;76(11).
    PMID: 37898554 DOI: 10.1093/lambio/ovad126
    Citrus essential oils (EOs) have shown significant antibacterial activity. The present study was undertaken to evaluate the antibacterial activity of the peel oils of Citrus microcarpa and C. x amblycarpa against Escherichia coli. The minimum inhibition concentration (MIC) was determined by using the broth microdilution assay. The checkerboard method was used to identify synergistic effects of the EOs with tetracycline, while bacteriolysis was assessed by calculating the optical density of the bacterial supernatant, crystal violet assay was used to assess their antibiofilm. Ethidium bromide accumulation test was employed to assess efflux pump inhibition. Electron microscope analysis was performed to observe its morphological changes. The EOs of C. microcarpa and C. x amblycarpa were found to contain D-limonene major compound at 55.78% and 46.7%, respectively. Citrus microcarpa EOs exhibited moderate antibacterial against E. coli with a MIC value of 200 μg/mL. The combination of C. microcarpa oil (7.8 μg/mL) and tetracycline (62.5 μg/mL) exhibited a synergy with FICI of 0.5. This combination inhibited biofilm formation and disrupt bacterial cell membranes. Citrus microcarpa EOs blocked the efflux pumps in E. coli. Citrus microcarpa EOs demonstrated promising antibacterial activity, which can be further explored for the development of drugs to combat E. coli.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Fauzia KA, Aftab H, Miftahussurur M, Waskito LA, Tuan VP, Alfaray RI, et al.
    BMC Microbiol, 2023 Jun 01;23(1):159.
    PMID: 37264297 DOI: 10.1186/s12866-023-02889-8
    BACKGROUND: Infection with Helicobacter pylori as the cause of gastric cancer is a global public health concern. In addition to protecting germs from antibiotics, biofilms reduce the efficacy of H. pylori eradication therapy. The nucleotide polymorphisms (SNPs) related with the biofilm forming phenotype of Helicobacter pylori were studied.

    RESULTS: Fifty-six H. pylori isolate from Bangladeshi patients were included in this cross-sectional study. Crystal violet assay was used to quantify biofilm amount, and the strains were classified into high- and low-biofilm formers As a result, strains were classified as 19.6% high- and 81.4% low-biofilm formers. These phenotypes were not related to specific clades in the phylogenetic analysis. The accessories genes associated with biofilm from whole-genome sequences were extracted and analysed, and SNPs among the previously reported biofilm-related genes were analysed. Biofilm formation was significantly associated with SNPs of alpA, alpB, cagE, cgt, csd4, csd5, futB, gluP, homD, and murF (P 

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Al-Mijalli SH, El Hachlafi N, Jeddi M, Abdallah EM, Assaggaf H, Qasem A, et al.
    Biomed Pharmacother, 2023 Nov;167:115609.
    PMID: 37801906 DOI: 10.1016/j.biopha.2023.115609
    Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), β-pinene (4.36%), β-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Liew WC, Muhamad II, Chew JW, Karim KJA
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127288.
    PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288
    Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Mohammadi P, Taghavi E, Foong SY, Rajaei A, Amiri H, de Tender C, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124841.
    PMID: 37182628 DOI: 10.1016/j.ijbiomac.2023.124841
    Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated. The results showed that the heating process parameters affected the physicochemical properties considerably. The conventional procedure yielded high molecular weight chitosan with a 12.7 % yield, while the microwave extraction procedure yielded a porous medium molecular weight chitosan at 11.8 %. The conventional extraction under microwave process conditions led to medium molecular weight chitosan with the lowest yield (10.8 %) and crystallinity index (79 %). Antibacterial assessment findings revealed that the chitosan extracted using the conventional method had the best antibacterial activity in the agar disk diffusion assay against Listeria monocytogenes (9.48 mm), Escherichia coli. (8.79 mm), and Salmonella Typhimurium (8.57 mm). While the chitosan obtained by microwave-assisted extraction possessed the highest activity against E. coli. (8.37 mm), and Staphylococcus aureus (8.05 mm), with comparable antibacterial activity against S. Typhimurium (7.34 mm) and L. monocytogenes (6.52 mm). Moreover, the minimal inhibitory concentration and minimal bactericidal concentration assays demonstrated that among the chitosan samples investigated, the conventionally-extracted chitosan, followed by the chitosan extracted by microwave, had the best antibacterial activity against the target bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  9. Kaur CP, Yong CC, Rajamanikam A, Samudi C, Kumar S, Bhassu S, et al.
    Parasitol Res, 2023 Jul;122(7):1463-1474.
    PMID: 37162590 DOI: 10.1007/s00436-023-07842-2
    Blastocystis sp. is an enteric protistan parasite that affects individuals worldwide with gastrointestinal symptoms such as abdominal discomfort, diarrhea, and flatulence. However, its pathogenicity is controversial due to its presence among asymptomatic individuals. Blastocystis sp. subtype 3 (ST3) is the most prevalent subtype among humans that have been associated with irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis, and colorectal cancer. Axenization of the parasite has been shown to impede its growth thus revealing the importance of accompanying bacteria in ensuring Blastocystis sp. survival. This study aims to identify the influence of accompanying bacteria on the growth of Blastocystis sp. ST3. Blastocystis sp. cultures were treated with Meropenem, Vancomycin, and Amoxicillin-Clavulanic acid (Augmentin). Bacteria-containing supernatant of antibiotic-treated and control cultures were isolated and identified through 16 s rRNA sequencing. Morphological changes of antibiotic-treated Blastocystis sp. ST3 were also observed. The cultures treated with meropenem and augmentin exhibited opposing effects with reduced growth of isolates from symptomatic patients and a significant increase in asymptomatic isolates. Whereas, vancomycin-treated cultures had no difference in the growth of Blastocystis sp. ST3 isolates from symptomatic and asymptomatic patients. Isolates from symptomatic and asymtomatic patients had 6 and 2 distinct bacterial species identified with Proteus mirabilis as the common bacteria among both types of isolates. Morphologically, Blastocystis sp. ST3 cultures exposed to meropenem and augmentin demonstrated an increase in pre-cystic forms. These findings demonstrate the effects of accompanying bacteria on the growth of Blastocystis sp. ST3 that could translate into clinical manifestations observed among Blastocystis sp.-infected patients.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Tong WY, Ahmad Rafiee AR, Leong CR, Tan WN, Dailin DJ, Almarhoon ZM, et al.
    Chemosphere, 2023 Sep;336:139212.
    PMID: 37315854 DOI: 10.1016/j.chemosphere.2023.139212
    Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Venmathi Maran BA, Palaniveloo K, Mahendran T, Chellappan DK, Tan JK, Yong YS, et al.
    Molecules, 2023 Aug 15;28(16).
    PMID: 37630329 DOI: 10.3390/molecules28166075
    Vibriosis and parasitic leech infestations cause the death of various farmed fish, such as groupers, hybrid groupers, sea bass, etc., in Malaysia and other Southeast Asian countries. In the absence of natural control agents, aquaculture operators rely on toxic chemicals to control Vibrio infections and parasitic leeches, which can have a negative impact on the environment and health. In the present study, we investigated the antivibrio and antiparasitic activities of the aqueous extract of giant sword fern (GSF) (Nephrolepis biserrata, Nephrolepidaceae, locally known as "Paku Pedang") against four Vibrio spp. and the parasitic leech Zeylanicobdella arugamensis, as well as its metabolic composition using the ultra-high-performance liquid chromatography-high-resolution mass spectrometry system (UHPLC-HRMS). The data show that the aqueous extract of GSF at a concentration of 100 mg/mL exhibits potent bactericidal activity against V. parahaemolyticus with a zone of inhibition of 19.5 mm. In addition, the extract showed dose-dependent activity against leeches, resulting in the complete killing of the parasitic leeches within a short period of 11-43 min when tested at concentrations ranging from 100 to 25 mg/mL. The UHPLC-HRMS analysis detected 118 metabolites in the aqueous extract of GSF. Flavonoids were the primary metabolites, followed by phenolic, aromatic, fatty acyl, terpenoid, vitamin and steroidal compounds. Notably, several of these metabolites possess antibacterial and antiparasitic properties, including cinnamaldehyde, cinnamic acid, apigenin, quercetin, cynaroside, luteolin, naringenin, wogonin, 6-gingerol, nicotinamide, abscisic acid, daidzein, salvianolic acid B, etc. Overall, our study shows the significant antibacterial and antiparasitic potential of the GSF aqueous extract, which demonstrates the presence of valuable secondary metabolites. Consequently, the aqueous extract is a promising natural alternative for the effective control of Vibrio infections and the treatment of parasitic leeches in aquaculture systems.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  12. Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil WNIWA, Ali MSM, et al.
    Appl Microbiol Biotechnol, 2023 Sep;107(18):5569-5593.
    PMID: 37450018 DOI: 10.1007/s00253-023-12651-9
    Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Fugaban JII, Dioso CM, Choi GH, Bucheli JEV, Liong MT, Holzapfel WH, et al.
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):35-52.
    PMID: 36445687 DOI: 10.1007/s12602-022-10017-7
    The aim of this project was to screen for bacteriocinogenic Bacillus strains with activity versus Staphylococcus spp. with future application in formulation of pharmaceutical antimicrobial preparations. Putative bacteriocinogenic strains, isolated and pre-identified as Bacillus spp. were selected for future study and differentiated based on repPCR and identified as Bacillus subtilis for strains ST826CD and ST829CD, Bacillus subtilis subsp. stercoris for strain ST794CD, Bacillus subtilis subsp. spizizenii for strain ST824CD, Bacillus velezensis for strain ST796CD, and Bacillus tequilensis for strain ST790CD. Selected strains were evaluated regarding their safety/virulence, beneficial properties, and potential production of antimicrobials based on biomolecular and physiological approves. Expressed bacteriocins were characterized regarding their proteinaceous nature, stability at different levels of pH, temperatures, and the presence of common chemicals applied in bacterial cultivation and bacteriocin purification. Dynamic of bacterial growth, acidification, and cumulation of produced bacteriocins and some aspects of the bacteriocins mode of action were evaluated. Based on obtained results, isolation and application of expressed antimicrobials can be realistic scenario for treatment of some staphylococcal associated infections. Appropriate biotechnological approaches need to be developed for cost effective production, isolation, and purification of expressed antimicrobials by studied Bacillus strains.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Balaraman P, Balasubramanian B, Liu WC, Kaliannan D, Durai M, Kamyab H, et al.
    Environ Res, 2022 Mar;204(Pt C):112278.
    PMID: 34757031 DOI: 10.1016/j.envres.2021.112278
    Recently, the phyco-synthesis of nanoparticles has been applied as a reliable approach to modern research field, and it has yielded a wide spectrum of diverse uses in fields such as biological science and environmental science. This study used marine natural resource seaweed Sargassum myriocystum due to their unique phytochemicals and their significant attributes in giving effective response on various biomedical applications. The response is created by their stress-tolerant environmental adaptations. This inspired us to make an attempt using the above-mentioned charactersitics. Therfore, the current study performed phycosynthesis of titanium dioxide nanoparticles (TiO2-NPs) utilising aqueous extracts of S. myriocystum. The TiO2-NPs formation was confirmed in earlier UV-visible spectroscopy analysis. The crystalline structure, functional groups (phycomolecules), particle morphology (cubic, square, and spherical), size (∼50-90 nm), and surface charge (negative) of the TiO2-NPs were analysed and confirmed by various characterisation analyses. In addition, the seaweed-mediated TiO2-NPs was investigated, which showed potential impacts on antibacterial activity and anti-biofilm actions against pathogens (Staphylococcus aureus, S. epidermidis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Additionally, some evaluations were performed on larvicidal activities of TiO2-NPs in oppose to Aedes aegypti and Culex quinquefasciatus mosquitos and the environmental effects of photocatalytic activities against methylene blue and crystal violet under sunlight irradiation. The highest percent of methylene blue degradation was observed at 92.92% within 45 min. Overall, our findings suggested that S. myriocystum mediates TiO2-NPs to be a potent disruptive material for bacterial pathogens and mosquito larvae and also to enhance the photocatalytic dye degradation.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al.
    Microbiol Spectr, 2024 Jan 11;12(1):e0321923.
    PMID: 38084971 DOI: 10.1128/spectrum.03219-23
    Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128230.
    PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230
    Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Mohamad Azranyi M, Aziz ZA, Ishak D, Mohd Nais NF, Elias ZA, Sulaiman NAF, et al.
    J Med Microbiol, 2024 Feb;73(2).
    PMID: 38380521 DOI: 10.1099/jmm.0.001809
    Introduction. Non-tuberculous Mycobacteria (NTM) is a group of mycobacteria distinct from the Mycobacterium tuberculosis complex. They can cause opportunistic infections, especially in immunocompromised individuals.Gap Statement. Over the last few years, there has been a growing concern regarding the distribution and antimicrobial resistance of NTM in Malaysia. however, a comprehensive study to fully grasp the NTM situation has yet to be conducted.Aim. This study aimed to investigate the species distribution and antimicrobial susceptibility patterns of NTM isolated from clinical samples in Malaysia from 2018 to 2022.Methodology. A retrospective analysis was conducted on NTM isolates obtained from various clinical specimens over a span of five years. The isolates were identified using phenotypic and molecular techniques, and antimicrobial susceptibility profiles for clinically significant isolates were determined using minimum inhibitory concentration.Results. The study revealed a diverse distribution of NTM species in Malaysia, with Mycobacteroides abscessus complex and Mycobacterium avium complex emerging as the most predominant. Furthermore, the antimicrobial susceptibility patterns showed varying degrees of resistance to commonly used antibiotics, highlighting the significance of treatment tailored to susceptibility testing results.Conclusion. This study provides valuable perspective into the epidemiology of NTM in Malaysia. The information gained from this study should prove useful for empirically treating serious NTM infections prior to species identification and the availability of antimicrobial susceptibility testing results.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Wang JL, Lai CC, Ko WC, Hsueh PR
    Int J Antimicrob Agents, 2024 Feb;63(2):107072.
    PMID: 38154661 DOI: 10.1016/j.ijantimicag.2023.107072
    To understand the global changes in non-susceptibility rates of Streptococcus pneumoniae to ceftriaxone, we conducted a study using the Antimicrobial Testing Leadership and Surveillance database. A total of 15,717 S. pneumoniae isolates were collected from 2016 to 2021. The minimum inhibitory concentrations (MICs) were determined using broth microdilution. The overall susceptibility rates of S. pneumoniae isolates to penicillin, ceftriaxone and ceftaroline were 63.4%, 94.0% and 99.6%, respectively. The geometric mean of MICs and MIC50/MIC90 values of ceftriaxone were higher in Asia than in other continents. China (33.9%), South Korea (33.8%) and Taiwan (27.6%) had the highest ceftriaxone non-susceptibility rates, followed by Turkey, India, Brazil, Malaysia, South Africa and Colombia, with rates between 10% and 20%. During the study period from 2020 to 2021, Asia had the highest MIC90 value (4 mg/L) for ceftriaxone in S. pneumoniae isolates, and the geometric mean of MICs increased from 0.25 mg/L in 2016-2017 to 0.39 mg/L in 2020-2021. Both Asia (from 83.4% to 75.1%) and Latin America (from 94.2% to 86.3%) showed a decreasing trend in ceftriaxone susceptibility rates from 2016 to 2021. In North America, Europe and Oceania, the susceptibility rate was higher than 95%, and there was no obvious change in the rate during the 6 y. Further analysis of the data from Asia revealed that individuals younger than 6 y of age had a lower susceptibility rate to ceftriaxone (71.6% vs. 81.7%, P < 0.05) than patients ≥6 y. The higher non-susceptibility rates of ceftriaxone in S. pneumoniae in Asia may lead to therapeutic challenges in community-acquired pneumonia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links