Displaying publications 41 - 60 of 78 in total

Abstract:
Sort:
  1. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, et al.
    Biomed Pharmacother, 2019 Nov;119:109445.
    PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445
    The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
    Matched MeSH terms: Cell Differentiation/drug effects*
  2. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Cell Differentiation/drug effects*
  3. Perera A, Ton SH, Moorthy M, Palanisamy UD
    Int J Food Sci Nutr, 2020 Dec;71(8):940-953.
    PMID: 32319838 DOI: 10.1080/09637486.2020.1754348
    In this study, the insulin-like and insulin sensitising effects of the ellagitannins geraniin, corilagin, ellagic acid, gallic acid and Nephelium lappaceum rind extract in 3T3-L1 adipocytes was investigated. It was observed that non-toxic concentrations of geraniin and its metabolites (0.2-20 μM) and N. lappaceum extract (0.2-20 μg/mL) exhibited insulin-like properties in the absence of insulin and insulin-sensitising properties in the presence of insulin particularly with regards to glucose uptake in 3T3-L1 adipocytes. The compounds were further able to promote adipocyte differentiation and may be involved in the inhibition of lipolysis in 3T3-L1 adipocytes in the presence of insulin. However further study into the molecular mechanisms of action of these compounds need to be carried out to better understand the potential of these compounds/extracts to act as therapeutic agents for hyperglycaemia associated with diabetes mellitus and obesity.
    Matched MeSH terms: Cell Differentiation/drug effects
  4. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Cell Differentiation/drug effects
  5. Sritharan S, Kannan TP, Norazmi MN, Nurul AA
    J Craniomaxillofac Surg, 2018 Aug;46(8):1361-1367.
    PMID: 29805067 DOI: 10.1016/j.jcms.2018.05.002
    OBJECTIVE: In this study, we evaluated the potential role of IL-6 and/or IL-17A in regulating the OPG/RANKL (osteoprotegerin/receptor activator of nuclear factor kappa b ligand) system of murine osteoblast cell line (MC3T3-E1) cultured on hydroxyapatite (HA).

    METHODS: MC3T3-E1 cells were seeded on HA and treated with recombinant IL-6 or rIL-17A or combination of the two cytokines. Cell proliferation and differentiation activity were measured by MTS and alkaline phosphatase assays respectively. Observation of cell adhesion and proliferation was examined by scanning electron microscopy. Gene and protein expressions were performed on RANKL and OPG using qPCR, Western blot and ELISA.

    RESULTS: We demonstrated that treatment with recombinant IL-17A (rIL-17A) and the combination rIL-6/rIL-17A promoted better adhesion and higher proliferation of cells on HA. Cells treated with rIL-17A and the combination cytokines showed a significant increase in differentiation activity on day 7, 10 and 14 as indicated by ALP activity (p 

    Matched MeSH terms: Cell Differentiation/drug effects
  6. Nam HY, Balaji Raghavendran HR, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T
    PLoS One, 2017;12(6):e0178117.
    PMID: 28654695 DOI: 10.1371/journal.pone.0178117
    The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications.
    Matched MeSH terms: Cell Differentiation/drug effects*
  7. Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, et al.
    Molecules, 2018 Jul 11;23(7).
    PMID: 29997309 DOI: 10.3390/molecules23071686
    Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
    Matched MeSH terms: Cell Differentiation/drug effects
  8. Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R
    Exp Biol Med (Maywood), 2017 03;242(6):645-656.
    PMID: 28092181 DOI: 10.1177/1535370216688568
    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
    Matched MeSH terms: Cell Differentiation/drug effects*
  9. Yap WH, Ahmed N, Lim YM
    Lipids, 2016 10;51(10):1153-1159.
    PMID: 27540737 DOI: 10.1007/s11745-016-4186-1
    Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.
    Matched MeSH terms: Cell Differentiation/drug effects
  10. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110225.
    PMID: 31761201 DOI: 10.1016/j.msec.2019.110225
    Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.
    Matched MeSH terms: Cell Differentiation/drug effects
  11. Tatit NS, Kevin P
    Med J Malaysia, 2019 12;74(6):504-508.
    PMID: 31929476
    INTRODUCTION: Choriocarcinoma is malignant cancer originating from placental trophoblast. The incidence of this cancer is estimated at 0.57-1.1 per 1000 births in the United States of America, Australia, Europe, and New Zealand. The rate is much higher in South East Asia and Japan with two occurrences per a thousand births. Telomerase activity is an important part of the apoptotic process. Increased telomerase activity will result in cellular immortality and poor prognosis in cancer. Vitamin A possess an essential role in cell proliferation and differentiation. One of the active metabolites of vitamin A is All-Trans Retinoic Acid (ATRA).

    METHODS: In this study, we examined the role of ATRA against telomerase activity in choriocarcinoma cell. This cell was derived from BeWo cell line (ATCC CCL-98) and were given different doses of ATRA.

    RESULTS: From this study, Choriocarcinoma cell that was given ATRA in dosage of 50μg/ml inhibit telomerase activity by extending the cycle time of 39.51±0.09, compared to the control group with a cycle time of 37.62±0.43. Cycle length change consistently with higher dose of ATRA.

    CONCLUSION: This study has proven that ATRA could inhibit telomerase activity by lengthening the cycle. Changes in the increase of ATRA doses in this experimental test need to be studied further on experimental animals, either administered as a single agent or as an addition to standard treatment of trophoblastic disease.

    Matched MeSH terms: Cell Differentiation/drug effects
  12. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE
    Int J Mol Sci, 2021 Sep 06;22(17).
    PMID: 34502544 DOI: 10.3390/ijms22179637
    Recently, composite scaffolding has found many applications in hard tissue engineering due to a number of desirable features. In this present study, hydroxyapatite/bioglass (HAp/BG) nanocomposite scaffolds were prepared in different ratios using a hydrothermal approach. The aim of this research was to evaluate the adhesion, growth, viability, and osteoblast differentiation behavior of human Wharton's-jelly-derived mesenchymal stem cells (hWJMSCs) on HAp/BG in vitro as a scaffold for application in bone tissue engineering. Particle size and morphology were investigated by TEM and bioactivity was assessed and proven using SEM analysis with hWJMSCs in contact with the HAp/BG nanocomposite. Viability was evaluated using PrestoBlueTM assay and early osteoblast differentiation and mineralization behaviors were investigated by ALP activity and EDX analysis simultaneously. TEM results showed that the prepared HAp/BG nanocomposite had dimensions of less than 40 nm. The morphology of hWJMSCs showed a fibroblast-like shape, with a clear filopodia structure. The viability of hWJMSCs was highest for the HAp/BG nanocomposite with a 70:30 ratio of HAp to BG (HAp70/BG30). The in vitro biological results confirmed that HAp/BG composite was not cytotoxic. It was also observed that the biological performance of HAp70/BG30 was higher than HAp scaffold alone. In summary, HAp/BG scaffold combined with mesenchymal stem cells showed significant potential for bone repair applications in tissue engineering.
    Matched MeSH terms: Cell Differentiation/drug effects
  13. Chua P, Lim WK
    Sci Rep, 2021 04 14;11(1):8096.
    PMID: 33854099 DOI: 10.1038/s41598-021-87431-4
    Stroke causes death and disability globally but no neuroprotectant is approved for post-stroke neuronal injury. Neuroprotective compounds can be identified using oxygen glucose deprivation (OGD) of neuronal cells as an in vitro stroke model. Nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells are frequently used. However, investigators often find their clonal variant undifferentiable and are uncertain of optimal culture conditions. Hence we studied 3 commonly used PC12 variants: PC12 Adh, PC12 from Riken Cell Bank (PC12 Riken) and Neuroscreen-1 (NS-1) cells. We found DMEM the optimal media for PC12 Riken and NS-1 cells. Using a novel serum-free media approach, we identified collagen IV as the preferred adhesive substrate for both cell lines. We found PC12 Adh cells cannot attach without serum and is unable to differentiate using NGF. NS-1 cells differentiated to a maximal 72.7 ± 5.2% %, with substantial basal differentiation. We optimised differentiated NS-1 cells for an in vitro stroke model using 3 h of OGD resulting in ~ 70% viable cells. We screened 5 reported neuroprotectants and provide the first report that serotonin is antiapoptotic in a stroke model and the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) is neuroprotective in PC12 cells. Thus we demonstrate the optimisation and validation for a PC12 cell-based in vitro stroke model.
    Matched MeSH terms: Cell Differentiation/drug effects*
  14. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Cell Differentiation/drug effects*
  15. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Cell Differentiation/drug effects
  16. Rothan HA, Suhaeb AM, Kamarul T
    Int J Med Sci, 2013;10(13):1899-906.
    PMID: 24324367 DOI: 10.7150/ijms.6774
    Adiponectin is an adipocyte-secreting hormone that increases cell sensitivity to insulin. It has been previously demonstrated that this hormone protects against Type II Diabetes and, is found to concurrently promote cell proliferation and differentiation. It is postulated that diabetic patients who suffer from tendinopathy may benefit from using adiponectin, which not only improves the metabolism of diabetic ridden tenocytes but also promotes progenitor cell proliferation and differentiation in tendons. These changes may result in tendon regeneration, which, in diabetic tendinopathy, is difficult to treat. Considering that such findings have yet to be demonstrated, a study was thus conducted using diabetic ridden human tenocyte progenitor cells (TPC) exposed to recombinant adiponectin in vitro. TPC were isolated from tendons of diabetic patients and exposed to 10 μg/ml adiponectin. Cell proliferation rate was investigated at various time points whilst qPCR were used to determine the tenogenic differentiation potential. The results showed that adiponectin significantly reduced blood glucose in animal models. The proliferation rate of adiponectin-treated TPCs was significantly higher at 6, 8 and 10 days as compared to untreated cells (p<0.05). The levels of tenogenic genes expression (collagen I, III, tenomodulin and scleraxis) were also significantly upregulated; whilst the osteogenic (Runx2), chondrogenic (Sox9) and adipogenic (PPARУγ) gene expressions remained unaltered. The results of this study suggest that adiponectin is a potential promoter that not only improves diabetic conditions, but also increases tendon progenitor cell proliferation and differentiation. These features supports the notion that adiponectin may be potentially beneficial in treating diabetic tendinopathy.
    Matched MeSH terms: Cell Differentiation/drug effects*
  17. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Cell Differentiation/drug effects
  18. Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, et al.
    Head Neck, 2012 Mar;34(3):344-53.
    PMID: 21438066 DOI: 10.1002/hed.21734
    There are limited studies on the effects of drugs that modulate epigenetic regulation for head and neck squamous cell carcinoma (HNSCC). This study determined the effect of valproic acid (VPA) on HNSCC.
    Matched MeSH terms: Cell Differentiation/drug effects*
  19. Tan SL, Ahmad TS, Ng WM, Azlina AA, Azhar MM, Selvaratnam L, et al.
    PLoS One, 2015;10(11):e0140869.
    PMID: 26528540 DOI: 10.1371/journal.pone.0140869
    To date, the molecular signalling mechanisms which regulate growth factors-induced MSCs tenogenic differentiation remain largely unknown. Therefore, a study to determine the global gene expression profile of tenogenic differentiation in human bone marrow stromal cells (hMSCs) using growth differentiation factor 5 (GDF5) was conducted. Microarray analyses were conducted on hMSCs cultures supplemented with 100 ng/ml of GDF5 and compared to undifferentiated hMSCs and adult tenocytes. Results of QuantiGene® Plex assay support the use and interpretation of the inferred gene expression profiles and pathways information. From the 27,216 genes assessed, 873 genes (3.21% of the overall human transcriptome) were significantly altered during the tenogenic differentiation process (corrected p<0.05). The genes identified as potentially associated with tenogenic differentiation were ARHGAP29, CCL2, integrin alpha 8 and neurofilament medium polypeptides. These genes, were mainly associated with cytoskeleton reorganization (stress fibers formation) signaling. Pathway analysis demonstrated the potential molecular pathways involved in tenogenic differentiation were: cytoskeleton reorganization related i.e. keratin filament signaling and activin A signaling; cell adhesion related i.e. chemokine and adhesion signaling; and extracellular matrix related i.e. arachidonic acid production signaling. Further investigation using atomic force microscopy and confocal laser scanning microscopy demonstrated apparent cytoskeleton reorganization in GDF5-induced hMSCs suggesting that cytoskeleton reorganization signaling is an important event involved in tenogenic differentiation. Besides, a reduced nucleostemin expression observed suggested a lower cell proliferation rate in hMSCs undergoing tenogenic differentiation. Understanding and elucidating the tenogenic differentiation signalling pathways are important for future optimization of tenogenic hMSCs for functional tendon cell-based therapy and tissue engineering.
    Matched MeSH terms: Cell Differentiation/drug effects*
  20. Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S
    PLoS One, 2016;11(2):e0149265.
    PMID: 26885980 DOI: 10.1371/journal.pone.0149265
    Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.
    Matched MeSH terms: Cell Differentiation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links