Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Tong KL, Chan KL, AbuBakar S, Low BS, Ma HQ, Wong PF
    PLoS One, 2015;10(3):e0121752.
    PMID: 25826409 DOI: 10.1371/journal.pone.0121752
    Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40) containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose) polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA) and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids composition from E. longifolia promotes anti-prostate cancer activities in LNCaP human prostate cancer cells.
    Matched MeSH terms: Cell Division/drug effects
  2. Elsadig RE, Reimann K, Yip CH, Lai LC
    Anticancer Res, 2001 Jul-Aug;21(4A):2693-6.
    PMID: 11724341
    Oestrone sulphate is a major source of active oestrogens in the breast. It is converted to oestrone by oestrone sulphatase. Breast cyst fluid (BCF) is a rich source of sex hormones and growth factors. BCF obtained from British women has been shown to inhibit oestrone sulphatase activity in the MCF-7 oestrogen-receptor-positive breast cancer cell line. The aim of the present study was to assess whether BCF obtained from Malaysian women inhibited oestrone sulphatase activity in the MCF-7 and MDA-MB-231 breast cancer cell lines. The cell lines were grown in supplemented Dulbecco's Modified Eagle Medium for 3 days, following which a 3-day incubation with sterilised BCF was carried out. At the end of the treatment period the cell monolayers were assayed for oestrone sulphatase activity and the number of cell nuclei counted on a Coulter Counter. BCF was also fractionated on a Bio-Sil SEC 125-5 column by HPLC and the effects of the fractions collected on oestrone sulphatase activity in the MDA-MB-231 cell line were assessed. All 18 samples of BCF tested inhibited cell growth in the MDA-MB-231 cell line while 8 out of 10 samples inhibited MCF-7 cell growth; 15 out of 18 BCF samples inhibited oestrone sulphatase activity in the MDA-MB-231 cell line whereas 5 out of 10 samples stimulated oestrone sulphatase activity in the MCF-7 cell line. HPLC fractions corresponding to molecular weights of > 158 kDa and 28 kDa were found to inhibit oestrone sulphatase activity in the MDA-MB-231 cell line. Further work is required to fully characterise these substances as they may have roles to play in the prevention of breast cancer.
    Matched MeSH terms: Cell Division/physiology
  3. Uyub AM, Anuar AK
    PMID: 11485102
    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.
    Matched MeSH terms: Cell Division*
  4. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Cell Division/drug effects
  5. Ee YS, Lai LC, Reimann K, Lim PK
    Oncol Rep, 1999 6 22;6(4):843-6.
    PMID: 10373668
    Transforming growth factor-beta (TGF-beta) has been shown to inhibit the growth of mammary epithelial cells and may play a protective role in mammary carcinogenesis. In contrast, oestrogens promote the development of breast cancer. Oestrone sulphate (E1S) is a huge reservoir of active oestrogens in the breast being converted to the weak oestrogen, oestrone (E1), by oestrone sulphatase. E1 is reversibly converted by oestradiol-17beta hydroxysteroid dehydrogenase to the potent oestrogen, oestradiol (E2). The aim of this study was to assess the effect of the TGF-beta1 isoform on growth and oestrogen metabolism in the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines. The results showed that TGF-beta1 significantly inhibited cell growth and stimulated the conversion of E1S to E1 and E1 to E2 in the MCF-7 cell line. In the MDA-MB-231 cell line TGF-beta1 significantly stimulated cell growth and inhibited the interconversions between E1 and E2. In conclusion, the growth inhibitory effect of TGF-beta1 on the MCF-7 cell line would appear to confer a protective effect in breast cancer. However, its ability to increase the amount of E2 would increase the risk of breast cancer. Which of these effects predominates in vivo remains to be explored. The growth stimulatory effect of TGF-beta1 on the MDA-MB-231 cell line probably acts through a mechanism independent of the effect of TGF-beta1 on oestrogen concentrations since this cell line is hormone unresponsive.
    Matched MeSH terms: Cell Division/drug effects
  6. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
    Matched MeSH terms: Cell Division/genetics
  7. Akinboro A, Mohamed KB, Asmawi MZ, Sulaiman SF, Sofiman OA
    J Zhejiang Univ Sci B, 2011 Nov;12(11):915-22.
    PMID: 22042656 DOI: 10.1631/jzus.B1000315
    In this study, freeze-dried water extract from the leaves of Myristica fragrans (Houtt.) was tested for mutagenic and antimutagenic potentials using the Allium cepa assay. Freeze-dried water extract alone and its combination with cyclophosphamide (CP) (50 mg/kg) were separately dissolved in tap water at 500, 1000, 2000, and 4000 mg/kg. Onions (A. cepa) were suspended in the solutions and controls for 48 h in the dark. Root tips were prepared for microscopic evaluation. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals' scavenging power of the extract was tested using butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as standards. Water extract of Myristica fragrans scavenged free radicals better than BHA, but worse than BHT. The extract alone, as well as in combination with CP suppressed cell division, and induced chromosomal aberrations that were insignificantly different from the negative control (P ≤ 0.05). However, cytotoxic and mutagenic actions of CP were considerably suppressed. The observed effects on cell division and chromosomes of A. cepa may be principally connected to the antioxidant properties of the extract. The obtained results suggest mitodepressive and antimutagenic potentials of water extract of the leaves of M. fragrans as desirable properties of a promising anticancer agent.
    Matched MeSH terms: Cell Division/drug effects
  8. Muhd Fakhruddin BH, Aminuddin BS, Mazlyzam AL, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:182-3.
    PMID: 15468878
    Skin is the largest organ in human system and plays a vital role as a barrier against environment and pathogens. Skin regeneration is important in tissue engineering especially in cases of chronic wounds. With the tissue engineering technology, these skins equivalent have been use clinically to repair burns and wounds. Consented redundant skin samples were obtained from patients aged 9 to 65 years old. Skin samples were digested with dispase, thus separating the epidermis and the dermis layer. The epidermis layer was trypsinized and cultured in DKSFM in 6-well plate at 37 degrees C and 5% CO2. Once confluent, the culture were trypsinized and the cells were pooled. Cells were counted using haemacytometer. Doubling time and viability were calculated and analysed. From the result, we conclude that doubling time and viability of in vitro keratinocytes cultured in DKSFM media is not age dependant.
    Matched MeSH terms: Cell Division/physiology
  9. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Cell Division/physiology
  10. Philip R, Dinsuhaimi S, Rosdan S, Samsudin AR, Shamsuria O, Mohd Zaki S, et al.
    Med J Malaysia, 2004 May;59 Suppl B:95-6.
    PMID: 15468835
    Matched MeSH terms: Cell Division/drug effects*
  11. Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS, Naidu R
    Molecules, 2015;20(7):11830-60.
    PMID: 26132907 DOI: 10.3390/molecules200711830
    In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.
    Matched MeSH terms: Cell Division/drug effects
  12. Nesaretnam K, Dorasamy S, Darbre PD
    Int J Food Sci Nutr, 2000;51 Suppl:S95-103.
    PMID: 11271861
    The vitamin E component of palm oil provides a rich source of tocotrienols which have been shown previously to be growth inhibitory to two human breast cancer cell lines: responsive MCF7 cells and unresponsive MDA-MB-231 cells. Data presented here shows that the tocotrienol-rich fraction (TRF) of palm oil and individual fractions (alpha, gamma and delta) can also inhibit the growth of another responsive human breast cancer cell line, ZR-75-1. At low concentrations in the absence of oestrogen tocotrienols stimulated growth of the ZR-75-1 cells, but at higher concentrations in the presence as well as in the absence of oestradiol, tocotrienols inhibited cell growth strongly. As for MCF7 cells, alpha-tocopherol had no effect on growth of the ZR-75-1 cells in either the absence or presence of oestradiol. In studying the effects of tocotrienols in combination with antioestrogens, it was found that TRF could further inhibit growth of ZR-75-1 cells in the presence of tamoxifen (10(-7) M and 10(-8) M). Individual tocotrienol fractions (alpha, gamma, delta) could inhibit growth of ZR-75-1 cells in the presence of 10(-8) M oestradiol and 10(-8) M pure antioestrogen ICI 164,384. The immature mouse uterine weight bioassay confirmed that TRF could not exert oestrogen antagonist action in vivo. These results provide evidence of wider growth-inhibitory effects of tocotrienols beyond MCF7 and MDA-MB-231 cells, and with an oestrogen-independent mechanism of action, suggest a possible clinical advantage in combining administration of tocotrienols with antioestrogen therapy.
    Matched MeSH terms: Cell Division/drug effects
  13. Pihie AH, Stanslas J, Din LB
    Anticancer Res, 1998 May-Jun;18(3A):1739-43.
    PMID: 9673398
    The antiproliferative activity of a styrylpyrone derivative (SPD) plant extract, was studied in three different human breast cancer cell lines in culture, and was compared with tamoxifen. The number of living cells was evaluated by Methylene Blue staining technique. SPD showed strong antiproliferative activity in estrogen receptor (ER) and progestin receptor (PgR) positive MCF-7 cells (EC50 = 6.30 x 10(-7) M) and receptor-negative MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but it partially inhibited the high progestin receptor positive T47D cells (EC50 = 1.58 x 10(-6) M). Whereas tamoxifen, a nonsteroidal antiestrogen exhibited strong inhibition on MCF-7 cells (EC50 = 1.41 x 10(-6) M) and partial inhibition on T47D cells (EC50 = 2.5 x 10(-6) M), but did not affect the MDA-MB-231 cells in the concentration range 0.1 nM-1 microM (EC50 = 5.01 microM). At the same concentration range SPD and tamoxifen did not inhibit the proliferation of normal human liver cell line CCL 13 and normal bovine kidney MDBK; whereas adriamycin, a common chemotherapy drug for the treatment of advance cancer, caused 95% inhibition at 10(-6) M. Competitive binding studies showed SPD had no ability to inhibit the binding of [3H]estradiol and [3H]progesterone to ER and PgR, respectively but, tamoxifen exhibited affinity for ER. Therefore, it can be concluded that the antiproliferative activity of SPD was selective towards breast cancer cell lines and not mediated by ER or PgR.
    Matched MeSH terms: Cell Division/drug effects
  14. Hwa IA, Reimann K, Lim PK, Lai LC
    Int J Mol Med, 1999 Aug;4(2):175-8.
    PMID: 10402485
    Oestrogens play an important role in the development of breast cancer. A very important source of active oestrogens in the breast is oestrone sulphate which is converted to oestrone by oestrone sulphatase. The aim of this study was to assess the effects of IGF-I and IGF-II on oestrone sulphatase activity in, as well as cell growth of, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cells were grown in supplemented DMEM and treated with varying concentrations of IGFs. At the end of the treatment period, intact cell monolayers were washed and assayed for oestrone sulphatase activity and the number of cell nuclei determined on a Coulter Counter. Oestrone sulphatase activity was significantly stimulated by IGF-I and II at concentrations of 100 ng/ml and 200 ng/ml in MCF-7 cells. IGF-I had no effect on oestrone sulphatase activity in MDA-MB-231 cells over the range of concentrations tested. Significant inhibition of oestrone sulphatase was observed in MDA-MB-231 cells at higher concentrations of IGF-II (50 ng/ml, 100 ng/ml and 200 ng/ml). Both IGF-I and IGF-II at higher concentrations (100 ng/ml and 200 ng/ml) significantly inhibited MCF-7 and stimulated MDA-MB-231 cell growth. Since IGF-I and II have effects on cell growth and oestrone sulphatase activity in breast cancer cell lines they may play a role in the development and progression of human breast cancer.
    Matched MeSH terms: Cell Division/drug effects
  15. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Cell Division/physiology
  16. Wong SF, Reimann K, Lai LC
    Pathology, 2001 Nov;33(4):454-9.
    PMID: 11827412
    Oestrogens play an important role in the development of breast cancer. Oestrone sulphate (E1S) acts as a huge reservoir of oestrogens in the breast and is converted to oestrone (E1) by oestrone sulphatase (E1STS). E1 is then reversibly converted to the potent oestrogen, oestradiol (E2) by oestradiol-17beta hydroxysteroid dehydrogenase (E2DH). The aim of this study was to assess the effects of transforming growth factor-beta1 (TGFbeta1), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) on cell growth, E1STS and E2DH activities in the MCF-7 and MDA-MB-231 human breast cancer cell lines. TGFbeta1, IGF-I and IGF-II alone or in combination inhibited cell growth of both cell lines but no additive or synergistic effects were observed. The treatments significantly stimulated E1STS activity in the MCF-7 cell line, except for TGFbeta1 alone and TGFbeta1 and IGF-I in combination, where no effects were seen. Only TGFbeta1 and IGF-II acted synergistically to stimulate E1STS activity in the MCF-7 cells. There was no significant effect on E1STS activity in the MDA-MB-231 cells with any of the treatments. In the MCF-7 cells, TGFbeta1 and IGF-I, IGF-I and IGF-II, and TGFbeta1, IGF-I and IGF-II acted synergistically to stimulate the reductive E2DH activity, while only TGFbeta1, IGF-I and IGF-II synergistically stimulated the oxidative E2DH activity. There were no additive or synergistic effects on both oxidative and reductive E2DH activities in the MDA-MB-231 cells. In conclusion, TGFbeta1, IGF-I and IGF-II may have effects on oestrogen metabolism, especially in the MCF-7 cell line where they stimulated the conversion of E1S to E1 and E1 to E2 and, thus, may have roles to play in the development of breast cancer.
    Matched MeSH terms: Cell Division/drug effects
  17. Kamilla L, Mansor SM, Ramanathan S, Sasidharan S
    Microsc Microanal, 2009 Aug;15(4):366-72.
    PMID: 19575837 DOI: 10.1017/S1431927609090783
    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.
    Matched MeSH terms: Cell Division/drug effects
  18. Masani MY, Noll G, Parveez GK, Sambanthamurthi R, Prüfer D
    Plant Sci, 2013 Sep;210:118-27.
    PMID: 23849119 DOI: 10.1016/j.plantsci.2013.05.021
    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.
    Matched MeSH terms: Cell Division
  19. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F
    Biomaterials, 2002 Oct;23(19):4001-10.
    PMID: 12162333
    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic
    Matched MeSH terms: Cell Division
  20. Roychoudhury PK, Gomes J, Bhattacharyay SK, Abdulah N
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):399-402.
    PMID: 10595439
    Studies were carried out in T-flasks and bioreactor to produce urokinase enzyme using HT 1080 human kidney cell line. While growing the cell line it has been observed that the lag phase is reduced considerably in the bioreactor as compared to T-flask culture. The HT 1080 cell adhesion rate and urokinase production were observed to be the function of serum concentration in the medium. The maximum urokinase activity of 3.1 x 10(-4) unit ml(-1) was achieved in the bioreactor at around 65 h of batch culture. Since HT 1080 is an anchorage dependent cell line, therefore, the hydrodynamic effects on the cell line were investigated.
    Matched MeSH terms: Cell Division
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links