Displaying publications 41 - 60 of 197 in total

Abstract:
Sort:
  1. Subramaniam S, Foo KY, Md Yusof EN, Jawad AH, Wilson LD, Sabar S
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1716-1726.
    PMID: 34742842 DOI: 10.1016/j.ijbiomac.2021.11.009
    Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
    Matched MeSH terms: Chitosan/chemistry*
  2. Subramaniam R, Mani MP, Jaganathan SK
    Cardiovasc Eng Technol, 2018 09;9(3):503-513.
    PMID: 29700782 DOI: 10.1007/s13239-018-0357-y
    In this study, a small vascular graft based on polyurethane (PU) blended with chitosan (Ch) nanoparticles was fabricated using electrospinning technique. Initially, the chitosan nanoparticles were synthesized using ionic gelation method. UV-Vis spectrophotometer confirmed the presence of synthesized Ch nanoparticles by exhibiting absorption peak at 288 nm and the Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the existence of the chitosan. Further, the synthesized Ch nanoparticles showed size diameter in the range of 134 ± 58 nm as measured using ImageJ. In the electrospun PU/chitosan graft, the fiber diameter and pore size diameter was found to be reduced compared to the pure PU owing to incorporation of chitosan into PU matrix. The FTIR spectrum revealed the presence of chitosan in the prepared nanocomposite membrane by the formation of the hydrogen bond and peak shift of CH and NH stretching. Moreover, the contact angle measurements revealed that the prepared graft showed decreased contact angle indicating hydrophilic nature compared to the pristine PU. The cytocompatibility studies revealed the non-toxic behavior of the fabricated graft. Hence, the prepared graft exhibiting significant physiochemical and non-toxic properties may be a plausible candidate for cardiovascular graft applications.
    Matched MeSH terms: Chitosan/chemistry*
  3. SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, Sharma MC, Venugopala KN, et al.
    Int J Nanomedicine, 2019;14:7419-7429.
    PMID: 31686814 DOI: 10.2147/IJN.S211224
    Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used anti-neoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both π-π stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene.

    Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed.

    Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (~65%) and releasing it in a controlled manner (~50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells.

    Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.

    Matched MeSH terms: Chitosan/chemistry
  4. Soon CY, Tee YB, Tan CH, Rosnita AT, Khalina A
    Int J Biol Macromol, 2018 Mar;108:135-142.
    PMID: 29175166 DOI: 10.1016/j.ijbiomac.2017.11.138
    Large amount of sodium hydroxide (NaOH) is consumed to remove the protein content in chitin biomass during deproteinization. However, excessive NaOH concentration used might lead to the reduction of cost effectiveness during chitin extraction. Hence, the present study aimed to extract and evaluate the physicochemical properties of chitin and chitosan isolated from superworm (Zophobas morio) larvae using 0.5M-2.0M of NaOH. The extracted chitin and chitosan were subjected to Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The 0.5M NaOH treatment resulted in the highest yield of chitin (5.43%), but produced the lowest yield (65.84%) of chitosan. The extracted chitin samples had relatively high degree of acetylation (DA) (82.39%-101.39%). Both chitin and chitosan showed smooth surface with tiny pores. The extracted chitin samples were confirmed as α-chitin based on the FT-IR and TGA. The chitin samples were amorphous with low degree of crystallinity. From TGA, the Chitosan 3 extracted was partially deacetylated. Both DPPH radical scavenging and ferric-chelating assay showed positive correlation with DD of chitosan isolates. However, the chitosan isolates were not fully dissolved, resulting in lower radical scavenging and ferric-chelating ability compared to commercial chitosan.
    Matched MeSH terms: Chitosan/chemistry
  5. Solanki N, Mehta M, Chellappan DK, Gupta G, Hansbro NG, Tambuwala MM, et al.
    Future Med Chem, 2020 11;12(22):2019-2034.
    PMID: 33124483 DOI: 10.4155/fmc-2020-0083
    Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
    Matched MeSH terms: Chitosan/chemistry*
  6. Sohni S, Hashim R, Nidaullah H, Lamaming J, Sulaiman O
    Int J Biol Macromol, 2019 Jul 01;132:1304-1317.
    PMID: 30922916 DOI: 10.1016/j.ijbiomac.2019.03.151
    The utilization of renewable and functional group enriched nano-lignin as bio-additve in fabricating composite has become the focus of attention worldwide. Herein, lignin nanoparticles in the form of hollow spheres with the diameter of the order of 138 ± 39 nm were directly prepared from agro-industrial waste (palm kernel shell) using recyclable tetrahydrofuran in an acidified aqueous system without any chemical modification steps. We then fabricated a new chitosan/nano-lignin composite material as highly efficient sorbent, as demonstrated by efficient removal (~83%) of methylene blue (MB) dye under natural pH conditions. The adsorption process obeyed pseudo-second-order kinetics and adequate fitting of the adsorption data using Langmuir model suggested a monolayer adsorption with a maximum adsorption capacity of 74.07 mg g-1. Moreover, thermodynamic study of the system revealed spontaneous and endothermic nature of the sorption process. Further studies revealed that chitosan composite with nano-lignin showed better performance in dye decontamination compared to native chitosan and chitosan/bulk lignin composite. This could essentially be attributed to synergistic effects of size particularity (nano-effect) and incorporated functionalities due to lignin nanoparticles. Recyclability study performed in four repeated adsorption/regeneration cycles revealed recyclable nature of as-prepared composite, whilst adsorption experiments using spiked real water samples indicated recoveries as high as 89%. Based on this study, as-prepared bio-nanocomposite may thus be considered as an efficient and reusable adsorptive platform for the decontamination of water supplies.
    Matched MeSH terms: Chitosan/chemistry*
  7. Siddiqui NA, Billa N, Roberts CJ
    J Biomater Sci Polym Ed, 2017 Jun;28(8):781-793.
    PMID: 28278045 DOI: 10.1080/09205063.2017.1301774
    The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2-formyl-3-thienylboronic acid (FTBA) and 4-formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose-dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA conjugates to glucose decreased with increase in BA ratio. On the other hand, the affinity of both BA conjugates for fructose decreased from ratio 1:1 to 2:1 then rose again at 3:1. Insulin release from FPBA nanoparticles (FPBAINP) and FTBA nanoparticles (FTBAINP) were both concentration-dependent within glyceamically relevant values (1-3 mg/ml glucose and 0.002 mg/ml fructose). Furthermore, the total amounts of insulin released from FPBAINP in both the media were higher than from FTBAINP. Both FPBAINP and FTBAINP have the potential for development as a glucose-selective insulin delivery system in physiological settings.
    Matched MeSH terms: Chitosan/chemistry*
  8. Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Buang F, et al.
    J Pharm Sci, 2015 Dec;104(12):4276-4286.
    PMID: 26447747 DOI: 10.1002/jps.24666
    Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations.
    Matched MeSH terms: Chitosan/chemistry*
  9. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
    Matched MeSH terms: Chitosan/chemistry*
  10. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
    Matched MeSH terms: Chitosan/chemistry*
  11. Shavandi A, Hu Z, Teh S, Zhao J, Carne A, Bekhit A, et al.
    Food Chem, 2017 Jul 15;227:194-201.
    PMID: 28274422 DOI: 10.1016/j.foodchem.2017.01.099
    Squid pens were subjected to alkali hydrolysis to extract chitin and chitosan. Proteins present in the alkaline extraction wastewater were recovered at pH 3, 4, 5 and 6, and were subjected to hydrolysis by trypsin, pepsin and a bacterial protease called HT for 1, 2, 4 and 24h. Hydrolysis of the extracted proteins with either trypsin or HT generated more antioxidant activity than hydrolysis with pepsin. Higher ACE-inhibitory activity was generated in the trypsin and pepsin hydrolysates than in the HT hydrolysate. Squid pen protein recovered from chitosan processing waste alkaline solution can be a potential source of bioactive peptides for addition to foods. The antioxidant and ACE-inhibitory activities of the extracted proteins were initially low and increased upon incubation with the proteases. Pepsin generated significantly lower (P<0.05) antioxidant activities compared to trypsin and HT, while trypsin and pepsin hydrolysates exhibited higher ACE-inhibitory activity than HT (P<0.05).
    Matched MeSH terms: Chitosan/chemistry*
  12. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
    Matched MeSH terms: Chitosan/chemistry*
  13. Sarwar A, Katas H, Samsudin SN, Zin NM
    PLoS One, 2015;10(4):e0123084.
    PMID: 25928293 DOI: 10.1371/journal.pone.0123084
    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
    Matched MeSH terms: Chitosan/chemistry*
  14. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
    Matched MeSH terms: Chitosan/chemistry*
  15. Sadiq AC, Rahim NY, Suah FBM
    Int J Biol Macromol, 2020 Dec 01;164:3965-3973.
    PMID: 32910963 DOI: 10.1016/j.ijbiomac.2020.09.029
    Chitosan-deep eutectic solvent (DES) beads were prepared from chitosan and DESs. The DESs used were choline chloride-urea (DES A) and choline chloride-glycerol (DES B). Both chitosan-DES beads were used to remove malachite green (MG) dye from an aqueous solution. The optimum pH for chitosan-DES A was recorded at pH 8.0 while optimum pH for chitosan-DES B was pH 9.0. The maximum adsorption capacity obtained for chitosan-DES A and chitosan-DES B were 6.54 mg/g and 8.64 mg/g, respectively. The optimum conditions for both chitosan-DES beads to remove MG were 0.08 g of adsorbent and 20 min of agitation time. Five kinetic models were applied to analyse the data and the results showed that the pseudo-second-order and intraparticle diffusion model fitted best with R2 > 0.999. For the adsorption capacity, results show that the Freundlich and Langmuir adsorption isotherms fitted well with chitosan-DES A and chitosan-DES B, respectively. The maximum adsorption capacities (qmax) obtained from chitosan-DES A and chitosan-DES B were 1.43 mg/g and 17.86 mg/g, respectively. Desorption indicated good performance in practical applications.
    Matched MeSH terms: Chitosan/chemistry*
  16. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Chitosan/chemistry*
  17. Sabra R, Billa N, Roberts CJ
    Int J Pharm, 2019 Dec 15;572:118775.
    PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775
    In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
    Matched MeSH terms: Chitosan/chemistry*
  18. Rubentheren V, Ward TA, Chee CY, Tang CK
    Carbohydr Polym, 2015 Jan 22;115:379-87.
    PMID: 25439908 DOI: 10.1016/j.carbpol.2014.09.007
    Chitosan film reinforced with nano-sized chitin whiskers and crosslinked using tannic acid was synthesized by the casting-vaporation method. The mechanical and physicochemical properties of several film samples (consisting of different ratio of chitin and tannic acid) were compared with neat chitosan. Tensile tests show that the addition of chitin improves the nanocomposite films mechanical properties up to 137% compared to neat chitosan, but this is slightly degraded when tannic acid is introduced. However, tannic acid and chitin whisker content greatly reduced moisture content by 294% and water solubility by 13%. Transmission electron microscopy (TEM) and Fourier-transform-infrared spectroscopy (FTIR) were used to investigate the morphology and molecular interaction of film. X-ray diffraction results indicated that the samples with chitin whiskers had a more rigid structure. The addition of tannic acid changed the structure into an anhydrous crystalline conformation when compared to neat chitosan film.
    Matched MeSH terms: Chitosan/chemistry*
  19. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
    Matched MeSH terms: Chitosan/chemistry*
  20. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
    Matched MeSH terms: Chitosan/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links